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Abstract

In recent years, there has been a surge in the availability of 3D sensors, leading to an
exponential increase in the amount of 3D data, paving the way for remarkable advance-
ments in 3D computer vision applications. The advances of deep learning on geometric
data with irregular structures, such as meshes and point clouds, have further enhanced
the ability to analyze and understand 3D shapes.

In this thesis, we explore the usage of geometric deep learning methods in 3D shape
analysis. The thesis can be divided into two parts. In the first part, the advancements of
non-linear localized mesh convolutions to tackle the limitations of traditional statistical
shape modeling methods, such as PCA, to capture fine details and extreme deformations
given its linear structure and global structure is shown. In particular, the cases of static
and dynamic neural deformable models are explored using a localized mesh convolution
operator to generate high fidelity deformable models. Using a large scale dataset of hand
scans composed by over 1200 subjects, a fine-grained neural hand model is constructed that
is able to outperform current state-of-the-art hand models. To explore the expressive power
of graph convolution in dynamic morphable models, a 4D generative model is proposed
that is able to manipulate 3D faces and generate dynamic expressions fully customized by
the user. Both models achieve state-of-the-art performance that outperforms traditional
PCA deformable models.

However, dealing with high-fidelity models poses several challenges, especially when it
comes to processing and storage. The enormous amount of points needed to capture
the fine-grained features of such models can be computationally expensive and memory-
intensive which limits their real-time applications. In the second part of this thesis, two
neural based simplification methods are proposed to simplify point clouds and meshes in
real-time. Both methods rely on graph neural networks to capture rich local and global
topological information of the 3D objects. Initially, a point cloud simplification method
is proposed that samples points in an sophisticated matter to preserve the underlying
perceptual features of the point cloud. Then, the simplification method is extended to
meshes through a graph neural network triangulation module that constructs the faces
of the simplified mesh. Through extensive evaluations and comparisons with state-of-the-
art baselines, we demonstrate the effectiveness and efficiency of our method in preserving
important shape characteristics while significantly reducing the data size.
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1.1 Problem Scope and Challenges

I n the recent days, the growth of the internet, social media, and digital devices has
led to an explosion of visual data, with millions of images and videos being uploaded
and shared every day. The vast amount of available data along with the development

of specialized hardware, such as graphics processing units (GPUs), has contributed to the
rise of deep learning era. Deep learning has revolutionized several fields ranging from in
natural language processing and machine translation [11, 12] to speech recognition and
computer vision, enabling tremendous breakthroughs in image recognition [13], object
detection [14, 15], and semantic segmentation [16]. Deep learning models are function
estimation methods designed to learn hierarchical representations of visual data, allowing
them to identify complex patterns and features in images, videos, and other visual data
with unprecedented accuracy and efficiency. Usually they are composed by many layers
that have the capacity to interpolate large-scale datasets.

However, the majority of deep learning methods that have been proposed apply to data
with Euclidean structures, such as 1D sequences or 2D grids and do not translate to ir-
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regular structured data. Initial approaches attempted to tackle irregular data, such as 3D
shape, using euclidean representations in order to leverage well studied approaches such
as Convolutional Neural Networks (CNNs). One of the most famous representations to
approximate the 3D surface are 3D Voxel grids, that can be processed using volumetric
CNNs, defined directly on the Euclidean grid [17, 18, 19]. However, the major disadvant-
ages of volumetric approaches include their substantial computational complexity and
imprecise representation, which can distort the topological characteristics of the shapes.
Additionally, these methods exhibit a significant redundancy, as they explicitly model the
interior of the shape, whereas in many applications, the focus is primarily on the surface.
Such limitations enforced the generalization of deep learning on irregular structured data,
such as graphs and manifolds. Nevertheless, their inherit lack the notion of ordering and
distancing has a great impact on directly applying deep learning techniques to such struc-
tures. During the last years several methods have arisen that explore deep learning models
on irregular domains that either completely lack structure, such as point sets, or lie on
non-Euclidean domain, such as graphs and manifolds. The manifestation of deep learning
models on irregular data has been established with the umbrella term “Geometric Deep
Learning” [4]. Social networks that define the relations between social media users, the
protein structure in a molecule as well as Riemannian manifolds that define 3D objects are
only some of the examples that can not be modeled directly with traditional deep learning
techniques. In this thesis we will only refer to three types of irregular data:

• Point Clouds: They belong in the category of sets, which are a mathematical
model for an unorganized collection of items. In their simplest form they contain
an unstructured set of points embedded on the 3D space. Point clouds are widely
used given that they are lightweight and the most accessible representation of 3D
surfaces. However, unlike grid-like data structures, point clouds lack any inherent
ordering, making it difficult to apply traditional order-dependent machine learning
techniques directly to them.

• Manifolds and Meshes: In mathematics, a manifold can be considered as a a to-
pological space that generalizes a surface in a way that it is locally homeomorphic to
a Euclidean space. In other words, even though manifolds may have a more complex
global structure they retain the properties of Euclidean spaces in a local level for
small neighborhoods around each point. Manifolds can have various dimensions and
shapes, and they are often used to model real-world phenomena with complex struc-
tures, such as surfaces, spaces of shapes, or even the space of all possible solutions
to a system of equations. Meshes are considered as 2D manifolds or discrete surfaces
and they are constructed by a collection of points and faces that define the surface
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approximation. They are usually triangular or quadrilaterals according to the for-
mulation used to represent their faces. They are among the most popular ways to
represent a 3D object in computer vision and graphics along with Point Clouds and
Voxel grids. However, similar to Point Clouds, the lack of intrinsic ordering makes
applying deep leaning non-trivial task. A comparison between Point Clouds, Meshes
and Voxels is illustrated in Figure 1.1.

• Graphs: They can be considered as a broad representation category of such irreg-
ularly structured data. A graph, in its general form, describes a system of relations
along with their corresponding interactions. The objects of the system are usually
called nodes or vertices and their relations links or edges. Graphs can be directed or
undirected, depending on whether its edges have a specific direction. In a directed
graph, the edges have a direction that information flows, while in an undirected
graph, the edges do not have a direction and messages from nodes are transmitted
in both ways. They can also be weighted or unweighted, depending on whether the
edges have a weight or value associated with them. In a weighted graph, the edges
have a numerical weight, while in an unweighted graph, all edges have the same
weight. Given that a large amount of real world problems that naturally take the
form of graphs, they are widely used in computer science, including in areas such
as network analysis, social network analysis, and optimization. They are also used
in many real-world applications, such as transportation networks, electrical circuits,
and molecular structures.

Recently, Implicit Functions have also received a lot of attention as a way to represent
3D objects. Implicit functions enable the encoding of complex 3D shapes and structures
without the need for explicit surface representations or voxel grids. Instead, they define
surfaces as the zero-level set of a continuous function, making it easier to generate, manip-
ulate, and render intricate 3D objects. They offer a versatile and compact way to capture
and work with 3D data, ultimately pushing the boundaries of what’s possible in 3D mod-
eling and visualization. However, similar to voxel grids, the computational complexity
they introduce is analogous to the sampling rate which limits their application in large
scale datasets. Additionally, given their ability to can represent arbitrary mesh topologies
without leveraging the intrinsic shape correspondences, they tend to perform worse com-
pared to mesh representations in fixed topology settings. Finally, one of the significant
limitations of implicit functions is the need for a meshing step, often involving algorithms
like Marching Cubes, to convert the implicit representation into a mesh format that can
be rendered and processed by common graphics engines and software.

On the other side, 3D point clouds or point sets, have been treated using a shared func-
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Figure 1.1: Various representations of a 3D bunny object. (Figure from [3])

tion over the points, which by construction hold the permutation equivariant property. In
particular, both PointNet [20] and DeepSet [21] architectures have revolutionized the pro-
cesses of point sets, achieving impressive performance on several benchmarks. Their basic
idea is to learn a spatial encoding of each point and then aggregate all individual point
features to a global point cloud signature. However, such formulation can only generate
global representations and lack the ability to describe local structures and patterns. In
an follow up work, PointNet++ [22], re-formulated the point cloud as a graph structure
with edges locally connecting neighboring points. Such restructured approach could better
imitate the concept of locality, that contributed to the success of Convolutional Neural
Networks (CNNs) in Euclidean domain. PointNet++ achieved remarkable results and
pioneered the formulation of Point Clouds as graphs. In the case of 3D meshes, the refor-
mulation to a graph structure comes naturally given that each vertex can be considered
as a node of a graph connected with a set of edges that form its faces. GeodesicCNN [5]
initially generalized the convolutional networks (CNN) paradigm to non-Euclidean man-
ifolds by constructing a local geodesic system of polar coordinates to extract “patches”.
The designed geodesic kernel was by construction invariant to deformations which was an
intrinsic analogy of regular convolution. However, the fixed size and the ordering of each
neighborhood, factors that enabled the weight sharing and the intrinsic correspondences
between patches in CNNs, can not be trivially defined in non-Euclidean meshes. To ad-
dress this, several methods have proposed to use fixed trajectories to count vertices around
each neighborhood and then apply regular convolution [6, 7].

1.2 Objectives

The aim of this PhD is to explore the use and application of geometric deep learning and
mesh convolutions to mitigate several issues of traditional methods of 3D shape analysis
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and tackle common problems of mesh processing. This thesis can be divided in two parts.
In the first part, two novel methods for 3D static and dynamic shape modeling are presen-
ted (Objectives 1 & 2) that aim to tackle the limitations of traditional shape modeling
to capture high frequency non-linear details of a 3D surface using mesh convolutions. In
the second part of the thesis, the storage processing requirements of such high fidelity 3D
models are stressed and two novel graph neural network based methods for 3D shape sim-
plification are proposed (Objectives 2 & 3). We evaluate their contribution to 3D meshes
and point clouds under several applications, in terms of performance, compactness and
runtime. In particular, the main objectives of this thesis are:

• Objective 1: To address the limitation of traditional 3D modeling to generate sharp
shapes from compact representations. In particular, traditionally shape modeling,
also called morphable modeling, is performed using Principal Component Analysis,
which can only generate smooth meshes that lack details. In this thesis, we attempt
to tackle this limitation of PCA 3D models by exploiting neural networks with mesh
convolutions to create expressive 3D models.

• Objective 2: Similar to static 3D morphable models, the design of expressive dy-
namic morphable models that can generate realistic animations is also essential. A
major limitation of statistical blendshape PCA models is their inability to generate
extreme deformations. Till now, intense expressions and facial animation can only
be generated by modifying artist-defined rigging. This makes modeling of human
faces with extreme facial expressions especially challenging. In this thesis, we ex-
plore the power of mesh convolutions to create a framework that is able to generate
photorealistic animation beyond traditional PCA blendshapes.

• Objective 3: Another challenge in the field of 3D computer vision is salience detec-
tion and simplification in 3D meshes and point clouds. Usually, 3D objects contain
an enormous amount of points in order to be rendered with high detail. However,
such information is usually redundant and affects the storage and processing require-
ments. In the literature, sampling and simplifying point clouds in a fast and efficient
manner remains challenging. By utilizing graph neural networks we aim to explore
both local and global patterns and overcome the limitations of the literature.

• Objective 4: Finally, another direction covered in this PhD is the implementation
of a neural, graph-based, method that learns to triangulate 3D point clouds. Point
cloud triangulation remains an unsolved problem that have been extensively studied
in 3D community. Current methods either require an excessive amount of points
or hand-crafted engineering to generate smooth results. Using the locality of graph
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neural networks we aim to develop a method that can generalize to arbitrary shapes
and accurately triangulate point clouds in real-time.

1.3 Contributions

In this section, we summarize the contribution of this thesis according to the aforemen-
tioned scope and objectives. The main objective of the work presented in this thesis is to
utilize the advents of geometric deep learning and specifically mesh convolutions and graph
neural networks in 3D shape analysis in order to overcome the limitations of traditional
3D modeling and simplification techniques. In particular

• In Chapter 3 we present the first large scale 3D hand model composed by over
than 1200 subjects, which constitutes the first hand model trained with such large
and diverse dataset. Currently, most methods that reconstruct and estimate human
hand poses rely on the low polygon MANO model. However, this model has limited
capability to capture diverse shape characteristics of real human hands because it
was trained on only 31 adult subjects. Additionally, hand textures have been largely
neglected in current methods. In this Chapter we address these issues by proposing
a new shape and appearance hand model called “Handy++” trained on a large scale
dataset with diverse ages, genders, and ethnicities. To train the shape component of
Handy++ we utilize spiral convolutions which prove beneficial to model the details
of the hand compared to traditional PCA models. Handy offers improved robustness
and accuracy over existing methods. The contribution of the aforementioned shape
method is not limited to hand shape modeling given that it can be easily applied to
different types of 3D modeling such as faces and bodies and model sharper shapes
compared to PCA models. Finally, we contribute to the community by making the
model publicly available.

• In Chapter 4 we tackle the unexplored problem of dynamic generation of 3D meshes
using mesh convolutions. In particular, although static 3D facial expression models
have been widely studied, the generation of photorealistic facial animation remains
relatively unexplored. In this Chapter, we implement a model that animates a
static 3D face in a fully customized way. Using a large scale dataset composed
of 180 subjects posing a series of different expressions, enables the generalization
of the proposed method to any subject simply by switching the identity template.
The contributions of this Chapter can be summarized in a) the introduction of a
challenging task of dynamic facial expression generation, b) the creation of a versatile
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generative model that can generate “a-la-cart” 4D expressions given a single mesh
template and c) the implementation of a robust GNN decoder that generates sharp
and extreme animations compared to blendshape models. Finally, we demonstrate
that the proposed method can be utilized to animate and manipulate the expressions
of any given subject from a single in-the-wild image.

• In Chapter 5 we introduce a learnable point cloud simplification method that learns
to sample points from a point cloud according to their saliency. Traditional mesh and
point cloud simplifications methods rely on time-consuming optimization schemes
that iteratively sample or discard points according to their importance. However,
in a real world scenario with hundreds of thousands points such scheme will set a
large computational burden. In this Chapter, we rely on a series of studies that
suggest that curvature related features highly correlate with the human perception
and provide the salient cues of the 3D object. We construct a graph neural network
based architecture that assigns an inclusion probability to each point of the input.
The core of this method is the Farthest Point Sampling module which is used to
sample points from a learnable latent high dimensional space, which has never been
previously exploited. A combination of novel loss functions is used to reinforce the
selection of points with increased curvature while at the same time retaining the
overall structure of the point cloud. The proposed method not only achieves better
perceptual similarity preservation compared to traditional method but also attain
a better runtime. The simplification module shows great generalization and can be
directly applied without further training to any point cloud. Finally, we showcase
that such method can be apply to meshes simply by following a triangulation step
after the sampling phase.

• In Chapter 6 we built upon the idea of learnable simplification method and we
propose a neural mesh simplification framework. Although the point cloud simpli-
fication method can sample salient points with high performance, it lacks the ability
to directly optimize the surface of the simplified mesh. This limits its applicability
in mesh simplification scenarios. To tackle this limitation and also accelerate the
runtime of the point sampling module we propose a GNN-based neural mesh simpli-
fication module that learns not only to sample points from the input mesh but also
triangulate them. Compared to traditional simplification approaches that collapse
edges in a greedy iterative manner, we propose a fast and scalable method that sim-
plifies a given mesh in one-pass. The contributions of this Chapter are three-fold.
Initially, we develop a constant complexity GNN-based sampling module that ex-
tends the notion of random sampling by sampling from a multinomial distribution.
To train this module we propose a soft relaxation of Chamfer distance that assigns
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high inclusion scores to points that preserve the structure of the input. Secondly, we
introduce a learnable triangulation module that predicts candidate triangles and as-
signs an inclusion score according to their properties. To formulate this module, we
propose to construct a graph on the candidate faces to enable information exchange
between them and then apply GNN layers to the face graph. We demonstrate that
such formulation is crucial for one-pass triangulation and the proposal of triangles
that respect manifold properties. Thirdly, we introduce a set of novel loss func-
tion that aim to preserve both the appearance and the structure of the input mesh
along with the surface properties of a mesh. Experimentally we show that those loss
function enable the generation of smooth, manifold and watertight simplified meshes
that outperform the traditional state-of-the-art methods. The method proposed in
this Chapter is lightweight and fully differentiable which can be translated in large
flexibility in the selection of loss functions and direct adaptability to any learnable
pipeline without a significant overhead. Finally, we demonstrate that the running
performance can be up to 10-times faster than traditional methods.

1.4 Impact and Applications

In this thesis we exploit the impact of geometric deep learning in common 3D task such as
modeling and simplification. The proposed hand model, the dynamic face 3DMM along
with the point cloud and mesh simplification methods that were developed through this
thesis can be used in a large variety of application including but not limited to:

• Medical and Human Assistive Applications: Given that the proposed hand
model is photorealistic and highly detailed it can aid the development of realistic
and practical prosthetics for hand disabled people. Additionally, it can impact the
creation of speech-to-sign-language methods that will translate speech signals to sign
language for deaf persons. Finally, the large amount of available subjects’ meta-data
can contribute to biometric applications in estimating the weight and the height
along with the ethnicity of a subject based on their hands.

• Graphics: Undoubtedly, a generative model that is able to animate a human face in
a photorealistic manner would be beneficial in the gaming and graphics community
along with augmented and virtual reality research (AR/VR). The task of human
avatar animation in a human-like way is an ongoing task for the gaming industry and
filming industry with current state-of-the-art role-play games being far away from
realism. In addition, our simplification methods can aid the graphics community
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to accelerate rendering, which is the biggest bottleneck in real-time applications, by
rendering simplified meshes that preserve the details of the original.

• Autonomous Driving: Nowadays, LiDAR (Light Detection and Ranging) sensors
are one of the key technologies used in autonomous driving cars to enable them to
perceive and interact with their environment. However, although LiDAR sensor can
scan 3D scenes in real-time they generate extremely dense point clouds containing
an enormous amount of redundant information creating a computational burden in
real-time processing. The point cloud simplification method proposed in this thesis
could be proven beneficial for the detection of semantic features of the scans and aid
the performance of autonomous driving systems.

• Scanning devices: With the advent of 3D scanning devices it is now possible to
acquire highly detailed 3D meshes and point clouds with high frames per second
(FPS) ratios. Nevertheless, such meshes and point clouds usually come at an un-
necessary increased resolution that leads to huge storage requirements. Using the
proposed simplification methods one could simplify the acquired scans to the re-
quired resolution as well as reinforce the simplification objective according to the
desired properties of the object.

1.5 Publications

In this Section, a list of publications is provided that I authored during the years of my
PhD studies. The publication list is split in two parts: a) the publications which are
the direct outcome of this thesis’ objectives, and b) the publications that are not directly
related and will not be covered in detail.

1.5.1 Relevant Publications

• Rolandos Alexandros Potamias, Jiali Zheng, Stylianos Ploumpis, Giorgos Bour-
itsas, Evangelos Ververas, Stefanos Zafeiriou, Learning to Generate Customized Dy-
namic 3D Facial Expressions, Proceedings of the European Conference on Computer
Vision (ECCV), 2020 [23].

• Rolandos Alexandros Potamias, Giorgos Bouritsas, Stefanos Zafeiriou, Revisit-
ing point cloud simplification: A learnable feature preserving approach, Proceedings
of the European Conference on Computer Vision (ECCV), 2022 [10].
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• Rolandos Alexandros Potamias, Stylianos Ploumpis, Stefanos Zafeiriou, Neural
Mesh Simplification, Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022 [24].

• Rolandos Alexandros Potamias, Stylianos Ploumpis, Stylianos Moschoglou, Va-
silios Triantafyllou, Stefanos Zafeiriou, Handy: Towards a high fidelity 3D hand
shape and appearance model, Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023 [25].

1.5.2 Other Publications

• Rolandos Alexandros Potamias, Alexandros Neofytou, Kyriaki Margarita Bintsi,
Stefanos Zafeiriou, Graphwalks: efficient shape agnostic geodesic shortest path es-
timation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPR-w), 2022 [26].

• Kyriaki-Margarita Bintsi, Vasileios Baltatzis, Rolandos Alexandros Potamias,
Alexander Hammers, Daniel Rueckert, Multimodal brain age estimation using inter-
pretable adaptive population-graph learning, Medical Image Computing and Com-
puter Assisted Intervention (MICCAI), 2023 [27].

1.6 Thesis Outline

In Chapter 2 we introduce the essential background knowledge on geometric deep learning
and graph neural networks and we present the current state-of-the-art models. Chapter
3 presents a static neural morphable model for the case of hand shape modeling and
GAN-based texture model. In Chapter 4 we present the first neural dynamic morphable
model that is able to generate realist 4D facial animations. In Chapter 5 we introduce
the necessity for simplification on 3D models and we present a GNN method to simplify
point clouds. The task of simplification is extended in meshes in Chapter 6, where we
present a real-time neural mesh simplification method. Finally, in Chapter 7, we conclude
the findings of this thesis and we present several future directions of research.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Contents
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Geometric Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Graph Pooling and Simplification . . . . . . . . . . . . . . . . . . . . . 24

2.1 Preliminaries

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique
in data analysis and machine learning. It is used to identify the most important features
or patterns in a dataset and transform the data into a new coordinate system called the
principal components.

The goal of PCA is to represent a high-dimensional dataset in a lower-dimensional space
while retaining as much of the original information as possible. This is achieved by finding
a set of orthogonal axes, called principal components, where the first principal components
captures the maximum variance in the data. Essentially, by projecting the data onto the
principal components, the maximum variance between them will be retained which is able
to capture most of the information of the data.

In a mathematical setting, given a dataset with " data samples [x1, x2, x3, ..., xN], each
consisting of % features, we can represent the dataset as a matrix X ∈ R)×*. The dataset
is assumed to be centered with zero mean, or a normalization step is usually performed
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to center the dataset around the axis origin. The first step of the decomposition requires
the calculation of the covariance matrix of &:

S = '()(&) = 1
"

XX+ (2.1)

PCA aim to identify an orthogonal subspace of rank %′ << %, that maximizes the variance
in the dataset. This can be mathematically formulated as an orthogonal subspace W =

[w0,w0, ...,w*′] ∈ R*×*′ that is able to transform the data samples x' to a lower rank
projection y' = W+x', where y' ∈ R*

′ .

The optimal subspace W can be identified by solving the system:

W∗ = argmax
W

[trace(W+SW)]

subject to W+W = I
(2.2)

The solution of the aforemention system is given by obtaining the Lagrangian:

Lagrangian(W, *) = W+SW − *(I − W+W) (2.3)

which results to the equation of eigenvalues of W:

SW = ΛW (2.4)

By selecting the appropriate number + of eigenvectors v' corresponding to the + largest
eigenvalues we are able to obtain a projection matrix W that reduces the dimensionality
of the data while maximizing their variance.

Principal Component Analysis, given its ability to effectively reduce the dimensionality of
datasets, is a widely used technique with application ranging from feature extraction and
noise reduction to 3D shape modeling.

2.1.2 Graph Definition

A graph G is defined as a set G = (V, E,W) of a finite number of " vertices V that are
connected through the edges E ⊆ V ×V and weights W. More specifically, two vertices
,, - are connected with weight .', ( ∈ W if there is an instance (,, -) in the set of edges
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E. From the set of edges E, one can construct the adjacency matrix A ∈ R) ,) that is
filled with non-zero values if and only if two vertices , and - are connected with an edge
/', ( ∈ E. In such case, the value 0', ( = 1. If the graph is undirectional the matrix A is
symmetric. In contrast, in the case of a directional graph, a non-zero entity 0', ( on the
adjacency matrix does not imply a non-zero entity 0 ( ,' as well. Throughout this thesis
only undirectional graphs are considered. Each graph is also associated with a diagonal
degree matrix D, indicating the number of edges associated with each vertex.

2.1.3 Convolution

Convolution operator has been the key to success of deep learning models, achieving
state-of-the-art performance in almost every grid structured problem. One of the key
properties that contributed to its success is the preservation of the relationships between
features and patterns when the input is translated. This property is named translation
equivariance and enables convolutional layers to operate on local neighborhoods of the
input data using shared weights, allowing them to detect similar patterns regardless of
their spatial location in the input. The main idea behind convolutions is the stationarity
of data to locally repeat similar features. Leveraging the stationarity property of the
data, one can reduce the number of parameters required by using shared weights across
local regions. Given that convolutions learn spatially invariant representations, meaning
that the learned features are robust to translations or shifts in the input data, they are
extremely efficient in tasks where the location of objects or features of interest within the
input can vary, and it is important for the model to recognize them regardless of their
position. In the Euclidean setting, the convolution between two continuous functions at
point 1 can be defined as:

( 2 ∗ 3) (1) :=
∫ ∞

−∞
2 (4)3(1 − 4) 54 (2.5)

where 2 , 3 are two functions and ∗ the convolution operator.

Similarly, in the discrete setting, convolution of a discrete point ! can be defined as:

( 2 ∗ 3) [!] =
∞∑

,=−∞
2 [6]3[! − 6] (2.6)

where 2 , 3 two discrete functions.
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In the special case of finite signals 2 , 3, a periodical wrapping is applied, usually called
cyclic or periodic convolution. It is called ”cyclic” because it treats the input sequences
as periodic signals that repeat indefinitely. The two input sequences are assumed to be
periodic, with the period equal to their respective lengths. The resulting sequence is
also of the same length as the input sequences. This operation is usually formulated by
transforming the filter function 3 in Eq. 2.8, to a circulant matrix ' (3) :

' (3) =



30 31 32 · · · 3,−1
3,−1 30 31 · · · 3,−2
3,−2 3,−1 30 · · · 3,−3
...

...
...

. . .
...

31 32 33 · · · 30



(2.7)

Using the circulant matrix formulation, the convolution operator can be redefined as a
simple matrix-vector multiplication:

( 2 ∗ 3) = ' (3) 2 (2.8)

An important derivative of circulant matrices is their commutativity property with the
shift operator. This also leads to the shift equivariance of convolution operator.

However, the notion of translation 3[! − 6] introduced Eq. 2.8 by shifting a point ! by
6, is elusive in the case of unstructured and irregular domains. Several approaches have
attempted to redefine the operation of convolution to non-Euclidean structures under the
umbrella term of geometric deep learning.

2.2 Geometric Deep Learning

Recently, the enormous amount of applications related to data residing in non-Euclidean
domains motivated the need for the generalization of several popular deep learning op-
erations, such as convolution, to graphs and manifolds. The main efforts include the
reformulation of regular convolution operators in order to be applied on structures that
lack consistent ordering or directions, as well as the invention of pooling techniques for
graph downsampling. All relevant endeavours lie within the new research area of Geomet-
ric Deep Learning (GDL) [4].
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2.2.1 Spectral Domain

As discussed previously, in the non-Euclidean case we cannot even define the translation
operation !−6, as in Eq. 2.8, on the manifold or graph, so the notion of convolution does
not directly extend to this case. An alternative definition of convolution in the frequency
domain can arise using the diagonalization of circulant matrices.

In particular, all commuting matrices, such as circulant matrices as defined in Eq. 2.7,
can be jointly diagonalized. Such property entails that all circulant matrices share the
same eigenvectors that diagonalize them. In addition, those eigenvectors will then sim-
ultaneously give the diagonalizing transformation Φ−1' (3)Φ, were the columns of matrix
Φ will be the eigenvectors of the circulant matrix. It can be easily proven using the shift
operator as a simple case of the circulant matrix that its eigenvectors correspond to the
Fourier basis. Given the joint diagonalization property of circulant matrices this can be
extended to any arbitrary circulant matrix. Thus, the convolution can be diagonalized by
the Fourier basis as:

(f ∗ g) = Φ diag(3̂)Φ+ f (2.9)

where diag(3̂) is a diagonal matrix containing the eigenvalues of the circulant matrix ' (3),
which also represent the Fourier transform of the values of ' (3). The main motivation
behind the decomposition of convolution operator to the Fourier basis is the popular
Fourier transform duality, in which a convolution between two signals in the spatial domain
can be calculated using matrix multiplication in the frequency domain. Indeed, Eq. 2.9,
can be reformulated using the previous definitions to:

(f ∗ g) = Φ diag(3̂)︸!!!︷︷!!!︸
G=F(&)

Φ+ f︸︷︷︸
F=F( - )︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸

F−1 (GF)

(2.10)

where F represents the Fourier operator and F −1 its inverse.

One of the most popular circulant matrices on discrete domains is the graph Laplacian,
given its ability to be defined on diverse structures. The Laplacian operator, for an !-
dimensional signal 2 : R. → R, can be defined as a combination of the intrinsic gradient
and divergence operators :
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L - = Δ 2 = −5,)(∇ 2 ) =
.∑
'=1

72 2

782
'

(2.11)

In the discrete case of graphs, the Laplacian operator quantifies how a function defined
on the graph changes with respect to its neighboring nodes:

Δ 2 (,) =
∑
(∈N〉

.', ( [ 2 (,) − 2 ( -)] (2.12)

where 2 (,) is the function 2 applied to node , and N〉 is the set of its neighbours.

This can be reformulated using the degree D and the weight matrix W:

∆ = D − W (2.13)

In the special case of an unweighted graph, Eq. 2.13 transforms to Δ = D − A, where
A is the graph adjacency matrix. However, in most cases the normalized version of the
Laplacian is being used:

Δ 2 = I. − %−1/29%−1/2 (2.14)

with I) defines the "×" identity matrix. Apart from the circulant matrix eigenvalues, one
can prove the relationship between Fourier basis and Laplacian eigenvalues using Dirilecht
energy function [4] or by expanding the classical Fourier definition for continuous functions
[28].

Similar to the circulant matrices, the Laplacian matrix ∆ is a real symmetric positive
semi-definite matrix with a complete set of orthonormal eigenvectors {:'})'=0, known as
the graph Fourier basis and their corresponding eigenvalues {*'})'=0 identify as frequencies
of the graph. Using the matrix of Fourier basis Φ ∈ R)×) and the diagonal matrix
Λ = diag(*0, *1, ..., *) ) ∈ R)×) of the eigenvalues we can diagonalize the Laplacian matrix
as ∆ = ΦΛΦ+ . Using the above formulation, it follows that a signal f defined on the graph
can be filtered by a function 3/ on the spectral domain as:

f ′ = 3/ (∆)f = 3/ (ΦΛΦ+ ) = Φ3/ (Λ)Φ+ f (2.15)

Leveraging the definition of convolution using the Fourier basis (Eq. 2.9), Bruna et.al.[29]
defined the first non-parametric spectral convolution layer (SpectralCNN), acting on
irregular domains as:
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f ( = #
(∑
'

ΦGi,jΦTfi
)

(2.16)

where f ( the features of node - , Φ the eigenvectors of the graph Laplacian Δ, Gi,j the
trainable diagonal matrix of spectral multipliers and #(·) a non-linearity applied vertex-
wise to the output of the convolution. To model the non-parametric filter G, the authors
utilized a cubic B-spline basis. Additionally, the authors proposed to retain only the first
+ eigenvectors of the Laplacian given that they capture most of the smooth details of
the graph. However, this approach comes with several drawbacks. In particular, it is
not scalable due to the requirement of multiplying the data by the graph Fourier basis
Φ. While the computation cost of this matrix is not neglectable (O("2)), the primary
bottleneck is the need to perform two multiplications (forward and inverse Fourier trans-
forms) on the data, resulting in a computational complexity of operations per forward and
backward pass. Also, since their model relies on smoothness in the Fourier domain and
uses spline parametrization to introduce localization in the vertex domain, it lacks precise
control over the local support of their kernels, which is crucial for learning filters with
specific localization. Finally, given the non-parametric form of the filter G, the number of
parameters of the layer depend linearly on the input which deviates from the design of a
shared constant number of parameters that traditional Euclidean convolution have.

Deferrard et.al.[30] proposed ChebNet, to address the limitations of SpectralCNN [29],
by applying a filter parametrisation based on polynomials of the eigenvalues of the graph
Laplacian. In particular, the authors defined the spectral filter 3/ (Λ) as:

3/ (Λ) =
0−1∑
1=0

;1Λ1 (2.17)

where ; ∈ R0 a learnable vector of coefficients. The corresponding convolution can be
now defined as:
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f ∗G g/ = Φ3/ (Λ)Φ+ f

= Φ
(
0−1∑
1=0

;1Λ1
)

Φ+ f

=

(
0−1∑
1=0

;1ΦΛ1Φ+
)

f

=

(
0−1∑
1=0

;1∆1

)
f

= 3̂/ (∆)f

(2.18)

Using this formulation, the number of parameters of the filter are independent from the
input size and are only related to the degree of the polynomial. To tackle this, a paramet-
rization of 3/ (Λ) as a polynomial function that can be computed recursively from the graph
Laplacian, given that K multiplications by a sparse Laplacian costs O(|E|) << O(|"2 |)
One such polynomial, traditionally used in Graph Signal Processing to approximate ker-
nels (like wavelets), is the Chebysev polynomial [31]. Recall that the Chebysev polynomial
<1 (8) of order + can be evaluated as:

<0(8) = 1
<1(8) = 8
<1 (8) = 28<1−1(8) − <1−2(8)

(2.19)

The convolution filter can be parametrized as truncated expansion with Chebysev polyno-
mial of order =, where ;1 are learnable Chebysev coefficients. Using this parametrization,
the number of convolution parameters are independent of the size of the graph, which
enables the scalability of the operator. Furthermore, another important property of this
formulation is that the filters are localized in the spatial domain given that both the Lapla-
cian along with its powers ∆1 are local operators acting around a +-hop neighborhood.

In a following work, Kipf and Welling [32], proposed Graph Convolutional Network
(GCN) to simplify the Chebysev polynomial to a linear form, i.e. k = 2 which results to
1-hop neighborhood localized filters with only two parameters for each convolution. The
reparametrized convolutions, using the normalized Laplacian, were defined as:

f ∗G g/ = 3̂/ (∆)f

= ;0f − ;1
(
D−1/2WD−1/2

)
f

(2.20)
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where ;0, ;1 are the parameters of the convolution. By setting ;0 = −;1 the graph con-
volution can be further constrained to one-parameter f ∗G g/ = ;0

(
D̂−1/2ŴD̂−1/2

)
f , where

Ŵ = W + I and D̂ = diag(∑ (≠' .̂' ().

2.2.2 Spatial Domain

Spectral approaches that aim to generalize convolutions to irregular domains, suffer from
the inherent drawback in their ability to generalize across different domains. As previously
discussed, spectral convolutions rely on the Fourier basis which is domain dependent,
meaning that if the domain slightly changes the Fourier basis will be totally different.
To enable cross domain generalization several approaches have been developed that act
directly on local charts and patches on the spatial space. As one can easily identify, both
ChebNet and GCN methods boil down to applying simple filters acting on the +-hop
neighborhood of the graph in the spatial domain. Spatial convolutions can be thought as
the analogy of a kernel applied on a patch of a Euclidean signal, by locally aggregating
information around its node. In their general form, spatial convolutions can be defined as:

( 2 ∗ 3)(v') =
∑
(

3 (%' (v ()>

%' (v () 2 =
∫

2 (v')?(v ( , v')5v'
(2.21)

where ,, - two nodes of the graph, and 2 a function applied on them.

Masciet.al.introduced GeodesicCNN [5], convolution operator that leverages the intrinsic
properties of the manifold by applying filters to local patches represented using geodesic
polar coordinates. In particular, the polar coordinates of a node v ( can be given using the
intrinsic distance @(v () = dist(v ( , v') and the angular coordinate A(v () as:

?(v' , v () = /− (2!−2" )2/232
#/− (4 !−4" )2/232

$ (2.22)

where @ ( ,A ( represent the distance and the angular coordinates of node - respectively.

The idea of GeodesicCNN to utilize non-isotropic kernels extended in AnisotropicCNN
[33], by utilizing heat diffusion kernels to break the isotropic nature of the graph kernels.
The differences between kernels on a local patch of a 3D mesh can be illustrated in Figure
2.1.
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Figure 2.1: Patch kernel functions u(v' , v () used in different generalizations of convolution
on the manifold (Figure from [4])

MoNet [34] extend the kernel operator to handle both manifolds and graphs, making it
adaptable through learning. They define each patch operator as a weighted average of
the signal from neighboring points around a central point. The weights are determined
by learnable functions that take as input the central point and one of its neighbors, and
these functions are parameterized based on a pseudo-coordinate system. To increase the
degrees of freedom of the convolution, the authors propose to learn not only the filters but
also the patch operators by using a Gaussian kernel with learnable mean and covariance
matrices:

?(v' , v () = exp
(
−1

2
(
v ( − Bi

)+ Σ−1
'

(
v ( − Bi

) )
(2.23)

where Bi,Σ' are the learned mean and the covariance matrices of patch ,. It can be easily
seen that all of the aforementioned graph convolution operators can be expressed using the
MoNet formulation. Several follow-up works extended the notion of learned patch kernel
by using b-spline kernels [35] or by learning the pseudo-coordinate transformation [36].

Undoubtedly, a generalization of the previous methods called Graph Attention Net-
works (GAT) revolutionized the field of graph learning. GAT inspired from the attention-
based models [11], reformulated graph convolutions as message passing networks. In par-
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ticular, for every node of the graph a self-attention mechanism is applied between the node
and its neighbours:

0' ( = softmax ( C
(
F(v'),F(v ()

)
(2.24)

where C(·) is the self-attention mechanism and > (v') is a learnable function over the node
,. The authors proposed to use a linear transform between the concatenated features
of the two nodes followed by a non-linearity as self-attention function: C

(
F(v'),F(v ()

)
=

D
(
a+ [F(v') | |F(v ()]

)
, where | | represents the concatenation operator and D (·) a non-linearity.

Following GAT, several works have been proposed to generalize machine learning to ireg-
ular domains such as graphs and manifolds [37, 38, 39] which can be generalized under
the update rule of Message Passing Neural Networks:

v′
' = D

[
EΘ

(
v' , !

(∈N"

FΘ
(
v' , v ( , e', (

) )]
(2.25)

where EΘ(·), FΘ(·) are differentiable learnable functions with networks parameters Θ, v'
a node of the graph and v ( ∈ N' its neighbour, e', ( the features of edge (,, -) , ! denotes
a differentiable, permutation invariant function, e.g., sum, mean, min, max or mul and
D (·) a non-linearity. As shown in [40], all of the aforementioned graph convolutions can
be expressed using Eq. 2.25.

2.2.3 Geometric Deep Learning on Meshes and Point Clouds.

As discussed in the previous section, Meshes and Point Clouds can be considered as irreg-
ular domains in the context of geometric data processing. In both cases, the irregularity
arises from the lack of grid or uniform structure in the arrangement of vertices or points.
This irregularity poses challenges in processing and analyzing the data, as traditional
methods developed for regular grids or structures may not directly apply. Specialized
algorithms and techniques, such as those in the field of geometric deep learning, are often
used to handle these irregular domains and extract meaningful information from meshes
and point clouds.

Traditionally, Point cloud processing techniques handled discrete surfaces as unstructured
sets of points without inherent notions of intrinsic distances or connectivity. PointNet
[20], a groundbreaking approach, introduces a point set processing layer that employs a
1x1 convolution shared among all points, followed by batch normalization and ReLU ac-
tivation. The resulting local features are then aggregated using max pooling to generate
a global representation of the surface. Despite its simplicity, PointNet has demonstrated
impressive performance in 3D object classification and point cloud segmentation tasks,
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remaining competitive with more recent methods. An extension of PointNet, named
PointNet++ [22], was proposed to capture local structures of the point cloud using
a Message Passing Neural Network scheme. In contrast to PointNet, PointNet++ groups
point progressively using a so-called abstraction layer that aggregates local regions. Each
abstraction layer is composed by three components, a Sampling Layer, a Grouping Layer
and a Point Layer which sample centre points, group them with their +-neighbours and
process them using a mini-PointNet network, respectively. Using the Message Passing
Neural Network parlance of Eq. 2.25 we can define “abstraction layer” as:

v′
' = EΘ

(
max
(∈N"

ℎΘ(v ( , p ( − p')
)

(2.26)

where H' , H ( are the vertex ,, - 8IJ−positions. The Message Passing formulation of Point-
Net++ achieved state-of-the-art performance across various Point Cloud tasks and pi-
oneered the use of geometric deep learning on Point Sets. Recently, several approaches
leveraged this formulation to enhance point learning tasks [41, 42, 43, 26].

In contrast to Point Clouds, learning on Meshes requires construction of anisotropic filters,
that leverage the underlying structure of the manifold. However, in a fixed topology setting,
such an ordering is beneficial so as to be able to keep track of the existing correspondences.
Several methods, exploited the fixed topology of a mesh to define a fixed ordering of
the vertices and refrain from using permutation invariant operators. In particular, Lim
et.al.[6] proposed to order the vertices of a neighborhood using a spiral trajectory, as shown
in Figure 2.2 In a follow-up work, Bouritsas et.al.[7], defined a Message Passing Neural
Network that uses an anisotropic soft-attention on spiral trajectories [6]. In particular,
given a vertex v' ∈ V, the authors introduced a k-ring and a k-disk as:

0-ring(v) = v,
(k+1)-ring(v) = N

(
(k+1)-ring(v)

)
− k-disk(v),

k-disk(v) =
⋃

'=0,...,1
i-ring(v)

(2.27)

where N(V) is the set of all vertices adjacent to at least one vertex in the set V.

Once the k-ring is defined, the spiral trajectory centered around vertex v can be defined
as:

K(v, +) = {0-ring(v), 1-ring(v), ..., k-ring(v)} (2.28)

In order to be consistent across all vertices, the authors pad or truncate K(v, +) to a fixed
length $. To fully define the spiral ordering, the authors selected the initial vertex of
K(v, +) to be in the direction of the shortest geodesic distance between a static reference
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Figure 2.2: a) The polar coordinates constructed by GeodesicCNN [5] on a local patch b)
The spiral trajectory that enumerates a fixed ordering of the neighbouring vertices of the
patch. [6, 7]

vertex. Given that all 3D faces share the same topology, spiral ordering K(v, +) will be
the same across all meshes and so, the calculation is done only once. With all the above
mentioned, Spiral Convolution can be defined using the Message Passing Neural Network
formulation as:

v′
' = EΘ

(
| |

(∈5 (v,1 )
ℎΘ(v ()

)
(2.29)

where EΘ and ℎΘ correspond to convolution learnable parameters, such as Multi-Layer
Perceptrons (MLPs). Although both of the learnable functions could include a non-linear
activation function, a non-linearity after the aggregation function EΘ empirically achieved
better performance.

The fixed ordering defined by the spiral trajectories in equivalence to traditional convo-
lutions allows the use of long-studied practices in the computer vision community. For
example, small patches can be used, leading to fewer parameters and fast computation.
Furthermore, the authors showed that dilated convolutions can also be adopted in the
spiral operator by simply subsampling the spiral.
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2.3 Graph Pooling and Simplification

2.3.1 Graph Pooling

One of the components underlying the success of large-scale CNNs are pooling layers, intro-
duced to formulate training in a hierarchical manner. Until recently, graph neural network
(GNN) architectures used for tasks like classification, segmentation and generation, learn
global graph representations by relying solely on node aggregations, neglecting the char-
acteristics of local substructures. To mitigate such issues, several graph pooling layers
have been introduced for hierarchical representation learning. Initial approaches, utilized
variations of the non-trainable Graclus clustering algorithm [44, 45, 35] and Farthest Point
Sampling [22] to perform pooling operations and generate hierarchical representations of
the input node set. The first differentiable pooling layer (DiffPool) was introduced by [46]
that learns a soft assignment matrix to perform node clustering. However, the clustering
assignment matrix requires quadratic storage complexity and it is not scalable to large
scale graphs [47]. To address the limitations of DiffPool several Top-K selection methods
have been proposed, that select the top ranking nodes according to a learnable projection
score [48, 47]. In order to enrich the projection score with local graph structure, SAGPool
[49] utilized a GNN layer to assign self-attention scores to each node. However, Top-K ap-
proaches retain only a subset of the edge set of the input graph, leading to isolated nodes.
Ranjan et al., [50] introduced ASAPooling, an extension to Top-k pooling schemes that
performs node aggregation to address the edge connectivity limitations of the previous
methods. Recently, a motif based pooling was introduced [51] that applied selection and
clustering pooling techniques on the graph that was partitioned into small motifs.

2.3.2 Mesh Simplification

Mesh Simplification is a well studied field with long history of research. Traditional sim-
plification algorithms repeatedly decimate the input mesh according to a cost function to
preserve its rendered appearance, until the desired simplification ratio is reached. In an
abstract sense, one may regard mesh simplification as a pooling process, since the input
topology is given and its simplified version is unknown. However, in contrast to common
graph pooling architectures, mesh simplification methods should also respect the surface
properties of the mesh, such as smoothness and manifoldness. A natural approach to by-
pass the limitations is to attempt to bridge both words, as it will be described in Chapter
5 and Chapter 6.
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Simplification methods can be distinguished in two major categories: vertex clustering/-
decimation and edge collapse methods. Vertex decimation methods rank vertices accord-
ing to a heuristic geometric cost function, such as their distance from the average plane
[52, 53, 54], to ensure that least important vertices will be decimated first. However, al-
though it is considerably more interpretable technique, a re-tessellation of the generated
holes is required after each vertex deletion, making such algorithms impractical. On the
other hand, edge collapse methods preserve the input topology by sequentially contract-
ing pairs of vertices (i.e. edges). Hoppe et.al.[55, 56] pioneered an energy cost function
defined over the edges that is attempted to be minimized in every contraction step. Fol-
lowing this idea, in the seminal works of [57, 58], each vertex was associated with the set
of planes in its 1-ring neighborhood and was expressed by a fundamental quadric matrix.
The authors showcased, that using the quadric matrix, the distance of a point from a set
of planes can be expressed using the sum of their quadrics, which is known as Quadric
Error Metric (QEM). Using this property, edges that introduce the minimum point-to-
plane distance were the first to be collapsed. Several approaches have built upon QEM
to incorporate texture [59, 60], curvature [61, 62, 63, 64], mesh saliency [65, 66, 67], spec-
tral properties [68, 69], boundary constrains [60] or to speed-up the process using parallel
processing [70, 71]. In [72] it was observed that greedy simplification methods lead to
sub-optimal meshes and attempted to tackle mesh simplification as a global optimization
problem using shape proxies. In particular, the authors introduced a normal deviation
error metric to partition the input mesh to non-overlapping connected regions and then
fit plane approximations (shape proxies) to each partition. Although the process produces
more accurate shape approximations of the input, the method is not particularly efficient.
Recently, Hanocka et.al.[73] proposed the utilization of an adaptive greedy edge collapse
method as a learnable pooling strategy, where edge weights are learned through the net-
work. However, apart from the inefficient greedy nature of the edge collapse methods, the
resulting mesh faces can only be decimated approximately by a factor of two and thus
limiting its applicability.
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CHAPTER 3

STATIC NEURAL DEFORMABLE MODELS:
THE CASE OF HAND MODEL
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Over the last few years, with the advent of virtual and augmented reality, an
enormous amount of research has been focused on modeling, tracking and recon-
structing human hands. Given their power to express human behavior, hands

have been a very important, but a challenging component of the human body. Currently,
most of the state-of-the-art reconstruction and pose estimation methods rely on the low
polygon MANO model [2]. Apart from its low polygon count, MANO model was trained
with only 31 adult subjects, which not only limits its expressive power but also imposes un-
necessary shape reconstruction constraints on pose estimation methods. Moreover, hand
appearance remains almost unexplored and neglected from the majority of hand recon-
struction methods. In this chapter, a large-scale model of the human hand is introduced
and proposed, named “Handy++”, which models both shape and appearance composed
of more than 1200 subjects. The model is made publicly available for the benefit of the
research community. In contrast to traditional models that are based on smooth PCA
decomposition, the proposed model utilizes a mesh convolution operator that acts dir-
ectly on the mesh space and learns hierarchical representations. In this way, semantically
meaningful representations can be learned and the number of parameters can be consid-
erably reduced. Additionally, the proposed hand model was trained on a dataset with
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large diversity in age, gender, and ethnicity, which tackles the limitations of MANO and
accurately reconstructs out-of-distribution samples. In order to create a high quality tex-
ture model, a powerful GAN is utilized, which preserves high frequency details and is able
to generate high resolution hand textures. To showcase the capabilities of the proposed
model, a synthetic dataset of textured hands was built and a hand pose estimation net-
work was trained to reconstruct both the shape and appearance from single images. As it
is demonstrated in an extensive series of quantitative as well as qualitative experiments,
the proposed model proves to outperform the state-of-the-art and realistically captures
the 3D hand shape and pose along with a high frequency detailed texture even in adverse
“in-the-wild” conditions.

Figure 3.1: Our proposed hand model is able to generalise and accurately reconstruct the
3D hand shape and appearance from a single in-the-wild image. High frequency details
are visible in the reconstructions such as wrinkles, veins, nail polish etc.

3.1 Introduction

Humans express their emotions mainly using their facial expressions and hands. Hand
movements and poses are strong indicators of body language and can convey meaningful
messages which can be key factors in human behavioral analysis. For this, hands have
been widely studied in regard to their biometric applications [74, 75]. 3D hand models
lead the technological developments of crucial tasks for virtual reality such as human hand
tracking [76, 77, 78, 79] and pose estimation [80, 1]. Specifically, hand pose estimation
algorithms utilize these models in order to reconstruct a subject’s hand from a monocular
depth or RGB image. However, most of the current state-of-the-art methods on 3D hand
reconstruction and pose estimation rely on low polygon models, with minimum diversity
in terms of age, gender, and ethnicity and without any hand texture appearance [2].

In particular, MANO [2] is considered the most popular hand model, which pioneered the
construction of a parametric human hand model. Apart from its low polygon resolution
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(778 vertices), it is composed by just 31 subjects, which limits the accuracy of high fidelity
3D reconstruction models. A statistical model with such a low number of samples will
always constrain the reconstruction of hand shapes of diverse age and ethnicity groups.
In the same context, despite the efforts of implementing strong pose priors to accurately
constrain parametric models on valid hand poses [81], reconstruction methods are still
dependent on a limited shape model. Importantly, current parametric models are con-
structed only by adults’ hand shapes in the age range of 20-60 years old, disregarding
the shape variations out of this age range. Experimental evidence shows that there is a
significant difference in shape between children’s and adults’ hands. This difference makes
current shape models more prone to reconstruction errors for arbitrary age gropus.

Additional to the shape component, a major limitation of current hand models is the ab-
sence of a high resolution texture model. Despite the necessity in virtual and augmented
reality for a personalized appearance reconstruction, there are only a few studies that at-
tempted to model hand texture along with shape and pose. In particular, current methods
on hand texture reconstruction from monocular images are constrained on limited demo-
graphic variations and low resolution textures that are ill-suited for real-world applications
[82, 83, 84, 8, 85]. Recently, HTML [8] proposed the largest available parametric texture
model of the human hand composed of 51 subjects. Given that the texture component
is based on Principal Component Analysis (PCA) of low resolution UV texture maps,
the generated textures tend to be blurry, lacking the high frequency details of the hand.
Low resolution textures not only limit the fidelity of RGB reconstructions but also the
generations of realistic synthetic data. Currently, state-of-the-art hand-object detection
methods [86, 87, 88] train their models on synthetic datasets with low resolution textures
such as HTML or vertex colors, which subsequently constrain the quality of the resulting
reconstructions.

In this study, the first large-scale parametric shape and texture hand model is proposed,
named “Handy”, composed of over 1200 subjects. Given these high resolution textured
scans with large demographic, gender, and age variations, a high resolution hand model
was built, which overcomes the shape limitations of previous state-of-the-art models. This
is the first hand model that captures subjects with ages from 1 to 81 years old.

The scans come with high resolution textures which enable the creation of a highly detailed
texture model. In contrast to HTML [8], a high resolution texture model was built, using
a style-based GAN which allows the modeling of high frequency details of the human hand
(e.g., wrinkles, veins, nail polish). Under a series of experiments, the proposed parametric
model overcomes the limitations of previous methods and presents the first high fidelity
texture reconstruction method from single “in-the-wild” images.
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Besides the success of 3D hand reconstruction from monocular depth and RGB images,
there are currently only a few methods that are able to reconstruct the pose along with the
shape and texture components. Existing 3D hand datasets only contain hand annotations
in terms of pose and global rotation and they usually neglect hand shape variations by
modeling only a mean hand shape. Additionally, the lack of ground-truth high resolution
texture maps limits current hand reconstruction methods to properly predict the appear-
ance of a given hand. In order to enable texture modeling, the approach taken in this
work follows the trend of synthetic data generation. A large-scale dataset was built, that
encompasses annotations in terms of pose, shape, and texture information. In summary,
the contributions of this Chapter are the following:

• A large-scale shape and appearance model of the human hand, built using over 1200
3D hand scans with a wide diversity in terms of age, gender, and ethnicity, which is
made publicly available for the benefit of the research community.

• A synthetic dataset is created for monocular 3D hand reconstruction, utilizing the
high fidelity hand model developed in this work. This dataset is made publicly avail-
able. As demonstrated in the experimental section, the synthetic dataset improves
the performance of off-the-shelf reconstruction methods.

• A high fidelity appearance reconstruction method that is capable of reconstructing
high frequency details such as wrinkles, veins, nail polish, and so on, from monocular
images.

3.2 Related work

Parametric Hand Models

Over the years, several hand models have been proposed in the literature to approximate
hand articulations. Initially, Oikonomidis et.al.[89] attempted to model hand shape as a
collection of geometric primitives such as elliptic cylinders, ellipsoids, spheres, and cones.
In the sequel [89], various approaches were proposed to model hand joints using anisotropic
Gaussians [90], a collection of spherical meshes [91], or a union of convex bodies [92].
Schmidt et.al.[93] proposed the first implicit representation of the articulated hand using
the popular Signed Distance Function. Khamis et.al.[94] proposed the first linear blend
skinning (LBS) model constructed from 50 subject scans. The authors modeled hand
poses and shape variations using a low dimensional PCA. To tackle the volume loss and
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restrict unrealistic poses of the LBS, Romero et.al.[2] learned pose dependent corrective
blend shapes from the scans of 31 subjects and proposed the MANO parametric model. Li
et.al.[95] proposed the NIMBLE to model the interior of the hand, i.e. bones and muscles.
Recently, HTML [8] attempted to create a parametric appearance model of the human
hand by collecting hand textures from 50 subjects. However, given the limited amount
of data, the authors train a PCA model on the UV space that results in low resolution
textures. To address the aforementioned limitations, the present work proposes the first
large-scale model of both hand shape and appearance of the human hand, composed of
over 1200 scans.

Hand pose estimation

3D hand pose estimation has been a long studied field, originally tackled by deforming
a hand model to volumetric [96] and depth images [97, 98, 99, 100]. Initially, 3D pose
estimation was considered as a fitting problem where a 3D parametric model was used to
fit 2D keypoints [101, 102]. De La Groce et.al.[83] pioneered hand pose tracking from single
RGB images by solving an optimization problem. The advent of deep learning methods
has shifted the research interest to sparse joint keypoints prediction from RGB images
using CNNs [103, 80, 104, 102]. Most of these methods attempt to directly predict dense
3D hand positions by regressing the MANO model [2] parameters [87, 105, 106], which
constrain them to the shape and pose space of MANO. Several methods try to deviate from
MANO’s parameter space, by directly regressing 3D vertex positions using graph neural
networks [107, 108, 109]. Hasson et.al.[88] proposed a CNN-based method that regresses
MANO and AtlasNet [110] parameters to reconstruct 3D hand poses together with various
object shapes. Recently, a handful of methods attempted to reconstruct objects along
with hands by using implicit [111, 112], parametric [113, 114, 86] or a combination of both
representations [115].

Synthetic datasets for hand pose estimation

Synthetic datasets have been proven very effective, boosting training performance and
overcoming data limitations in many applications, ranging from face reconstruction [116]
to pedestrian detection [117]. Numerous amount of hand pose methods have been trained
using synthetic data generated under different hand poses and illumination environments
[103, 87, 118, 107, 86]. Hasson et.al.[88] rendered synthetic data using the SMLP model
[119] under various hand poses from the GraspIt dataset [120]. Apart from the hands,
the authors used objects from ShapeNet to generate a dataset of hand-object interactions.
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However, all of the aforementioned studies are limited to only a few texture variations [103]
or low resolution hand textures [84, 87, 88, 86], creating a domain gap between synthetic
and real-world images. To address the domain gap, in this work a new dataset is created
and proposed that consists both hands and objects. Similar to [88], the created dataset
utilizes high-resolution textures of hands, taking a step towards a photorealistic synthetic
hand dataset.

3.3 Handy++: Shape and Appearance Model

This section introduces the 3D dataset that was collected to build the high fidelity shape
and texture model. Then, the process of bringing the entire hand dataset into dense
correspondence and creating the large-scale shape model is described. Finally, the training
of a style-based appearance model that preserves all the high frequency details of the
human hand is detailed.

3.3.1 Large-scale 3D hand dataset

The large-scale 3D hand dataset used in this work was collected during a special exhibition
at the Science Museum, London. A 3dMD structured light stereo system with 4 cameras
was used to capture the hand data, producing high quality dense meshes. The raw scans
have a resolution of approximately 30,000 vertices. A total of 1208 distinct subjects were
captured, with available metadata including gender (53% male, 47% female), age (1 − 81
years old), height (80 − 210 cm), and ethnicity (82% White, 9% Asian, 7% Mixed and 2%
black), as shown in Figure 3.2.

Figure 3.2: Distribution of demographic characteristics of the scanned subjects. The
collected hand dataset covers a large variety of ages, heights, and ethnicities.
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Most notably, the collected hand scans exhibit a large diversity in terms of age, ethnicity,
and height, which provide a step towards a universal hand model. Compared to previous
methods [2, 8], the scans collected include over 360 children aged less than 12 years old and
100 elderly subjects aged over 60 years old. In order to capture different pose variations,
each subject was instructed to perform a range of hand movements according to a specific
protocol each day for a period of 101 days. In particular, each subject was instructed to
start from the open palm pose (canonical pose) and deform his hand according to several
common poses and signs for 10 seconds, resulting in around 300 frames per subject. Each
day a different pose protocol was utilized. Some example images can be seen in Figure
3.16. In this section, only the scans corresponding to the open palm pose utilized in order
to construct a large scale hand shape model. Several samples of the collected dataset are
illustrated in Figure 3.3.

Figure 3.3: Samples of different subjects under different poses on the collected dataset.
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3.3.2 Raw data dense registration

To create a statistical shape model of the human hand, a set of 3D scans was rigidly
aligned with a common template mesh. Two different resolution templates were used for
this method. As a low polygon resolution template, the MANO template was utilized
composed by 778 vertices, which can be directly adapted to the SMPL model [119]. For
high quality hand modeling, a high resolution, in terms of polygons, hand template was
utilized, comprising of 8407 vertices. The hand template was carefully designed by a
graphics artist in order to include anatomical details of the hand such as veins and nails.
A comparison between the MANO and the proposed template is shown in Figure 3.4.

Figure 3.4: Samples of different subjects under different poses on the collected dataset.

To bring the raw scans into dense correspondence a five-step pipeline was used. Initially,
the scans were rendered from multiple views and 2D joint locations were detected using
MediaPipe framework [79]. Subsequently, the 2D joint locations were lifted to 3D by
utilizing a linear triangulation and then the fingertips were detected using the projection
of the finger skeleton to the tips of the surface. Using the 3D detected skeleton, a fitting
process was performed by optimizing the pose parameters of a Linear Blend Skinning
model (LBS) to align the template hand to the exact pose and shape of the raw scan. As
an intermediate step of the raw scan registration, MANO [2] was used as an LBS model
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to optimize pose ; and shape L parameters using following loss function:

L = L! + L"#$ + ||!| |2 + ||" | |2 (3.1)

where L6 = | |M − M̂ | |2 is a landmark loss that enforces MANO joints M̂ to match the
detected joints M̂ and L!$7 = | |?' − ? ( | |2 is a collision loss that applied to vertices )' , ) (
that penetrate the surface and enforces them to be in contact. To find the points that
penetrate the surface we use the Winding Numbers algorithm. The optimization process
was performed using Adam optimizer with learning rate of 1/ − 3.

To obtain the fittings of the high resolution template, a manual mapping between the
barycentric coordinates of the MANO and the high resolution Handy template was defined
that was utilized to transfer the fitted MANO hand to the Handy template.

To acquire the hand dense registrations, Non-rigid Iterative Closest Point algorithm (NICP)
[121] was applied between the fitted hand template mesh and the 3D raw scans. Finally, in
order to avoid capturing any unnecessary deformations into the final shape model, a nor-
malization step was performed that reposes registered hands to the canonical open-palm
pose.

3.3.3 Handy: A PCA approach

As a baseline model, a deformable hand shape model described as a linear basis of shapes,
was used. In particular, using PCA, a hand model was build with " vertices that is
described by an orthonormal basis, after keeping the first !! principal components U ∈
R3)×.% and their associated * eigenvalues. This enabled the generation of hand instances
by regressing the shape parameters ! = [L0, L1, ..., L.% ] ∈ R.% as:

N# (!) = T +
.%∑
'=0

UiLi ∈ R3) (3.2)

where T ∈ R3) refers to the mean hand shape. Variations of the first 5 shape components
are illustrated in Figure 3.5.

Finally, the articulated hand model can be defined as:

M(!, ") = 9 (<8 (!, "), M (!), " ,W) (3.3)
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Figure 3.5: Mean shape T and the first five principal components, each visualized as
additions and subtractions of 3 standard deviations (±3#) away from the mean shape.

<8 (!, ") = N# (!) + N8 (") (3.4)

where 9 (·) corresponds to a linear blend skinning function (LBS) that is applied to the
articulated hand mesh with posed shape <8, W, M define the blend weights and kin-
ematic tree of joint locations, respectively, and !, " , are the shape and pose parameters,
respectively. To tackle the joint collapse of typical LBS function, the MANO learned pose
corrective blendshapes P [2] were used to produce more realistic posed hands:

N8 (") =
90∑
'=0

(O' (") − O' ("∗)) P' (3.5)

where P' are the pose blend shapes, K is the number of joints of the hand model, O' (") is
a function that maps pose parameters " to the rotation matrix of joint , and "∗ refers to
the canonical pose.

3.3.4 Handy++: a neural deformable hand model

Traditional shape modeling using a linear PCA is usually constrained given its limitation
to learn high frequency details using compact representations. In this section, a neural
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autoencoder is proposed to extend the “Handy” model. As shown in the literature, neural
networks that utilize the structure of autoencoders can accurately model 3D faces and learn
non-linear representations [122, 7]. Additionally, apart from the reconstruction quality,
non linear neural-based methods have shown an extreme capability in learning up to 50%
more compact representations compared to linear PCA models. The proposed neural
deformable model utilizes spiral mesh convolutions as a building block to model hand
shapes. As explained and discussed in Chapter 2, spiral mesh convolution, an ordering
based graph neural network for fixed topology meshes, manages to achieve state-of-the-
art performance by enforcing an explicit ordering of the neighbours of each vertex. Such
ordering allows a “1-1” mapping between the neighbours and the parameters of a learnable
local filter, similar to traditional convolution operator in Euclidean grids. Figure 3.6 shows
an example of a spiral trajectory for a random vertex in the hand palm.

Figure 3.6: Example of a spiral trajectory around a vertex in the palm of the hand, that
defines the ordering of its neighbors.

In essence, “Handy++” is a deep convolutional mesh autoencoder, that learns hierarch-
ical representations of a shape. An illustration of the architecture is shown in Figure 3.7.
Leveraging the connectivity of the graph with spiral convolutional filters, local processing
of each shape is enabled. Furthermore, to enable hierarchical learning and allow learning
in multiple scales, several pooling and unpooling layers are utilized similar to [122]. Both
pooling and un-pooling operators are pre-defined sparse matrices obtained from quadric
mesh simplification algorithm. The unpooling operators are based on sparse matrix mul-
tiplications with upsampling matrices P9 ∈ {0, 1}.×,, where 6 > !. Since upsampling
operation changes the topology of the mesh, and in order to retain the face structure,
upsampling matrices P9 are defined on the basis of down-sampling matrices. To achieve
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this, barycentric coordinates of the vertices that were discarded during downsampling pro-
cedure are stored and used as the new vertex coordinates of the upsampling matrices. This
way, semantically meaningful representations can be learned while at the same time the
number of parameters are considerably reduced. “Handy++” was trained using $1 loss
on the reconstructed hand meshes. The exact implementation details of the “Handy++”
network architecture can be found in Table 3.1.

Figure 3.7: Overview of “Handy++”, the proposed spiral autoencoder architecture.

Table 3.1: Implementation details of the “Handy++” architecture.
Encoder Module

Layer Input Dimension Output Dimension
Convolution 28431x3 28431x8
Downsampling 28431x8 5687x8
Convolution 5687x8 5687x16
Downsampling 5687x16 1138x16
Convolution 1138x16 1138x32
Downsampling 1138x32 228x32
Convolution 228x32 228x64
Downsampling 228x64 46x64
Fully Connected 46x64 8

Decoder Module
Layer Input Dimension Output Dimension
Fully Connected 8 46x64
Upsampling 46x64 228x64
Convolution 228x64 228x32
Upsampling 228x32 1138x32
Convolution 1138x32 1138x16
Upsampling 1138x16 5687x16
Convolution 5687x16 5687x8
Upsampling 5687x8 28431x8
Convolution 28431x8 28431x3

3.3.5 High resolution appearance model

As also shown in HTML [8], in order to train a texture model, the hand scans need to
be brought into correspondence. To achieve this optimally, a graphics artist designed a
UV hand template and used it as a reference template to unwrap the scans. However,
the hand scans were acquired using constrained light conditions with baked shadows. As
a result, before carrying out any training procedure, a pre-processing step need to be
followed on the UV textures to remove the shading and illumination. In particular, PCA
was applied to the UV textures in order to identify the components that mostly describe
the shading factors. Then, those components were subtracted from each texture UV map
to remove their unnecessary shading. Finally, an image processing step took place to map
hand textures to more natural colors, which entailed increasing the brightness, gamma
correction, and slightly adjusting the hue value.

For the training process, rather than modeling the appearance space in a low frequency
PCA domain as other methods do [8], a powerful GAN architecture, namely StyleGAN
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[123], was utilized to model the hand textures. Given the limited number of collected
data, a smaller learning rate of 0.001 was used along with a regularization weight E of 50
that further assisted in the “Fréchet Inception Distance” (FID) [124] score as well as the
visual quality of the final results. In Figure 3.8, some random generations of the proposed
high fidelity appearance model are illustrated. By utilizing the GAN architecture, high
frequency skin details are preserved while avoiding the smoothness that may be introduced
by the PCA model. Qualitative results of the proposed texture reconstruction in Figures
3.1 and 3.13 can validate this premise.

Figure 3.8: Generated high quality texture UV maps from the proposed GAN appearance
model.

Interpolation on the latent space of the Texture Model: Apart from the high
quality of the generated hand textures, a very handful property of the styleGAN is the
smooth transitions of the latent space of the proposed texture model. To showcase the
interpolation capabilities of the proposed style-based GAN model utilized to model the
hand textures, an interpolation experiment was conducted. In particular, random pairs
of UV maps were selected, projected to the latent space of the texture GAN and then
interpolation was performed to their latent values. Figure 3.9 shows that the texture model
produces meaningful latent representations between the two UV maps. Additionally, the
generated UV maps are realistic having also very smooth transitions from the source to
the target UV maps.
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Figure 3.9: Interpolation on the latent space of the proposed texture model.

3.4 Experiments

3.4.1 Intrinsic Evaluation of Proposed Hand Model

In this Section, an initial evaluation is performed contrasting the proposed Handy++ hand
shape model, against with the commonly used MANO model [2] and the PCA baseline
Handy. Following common practice, comparison of the three models is performed in terms
of generalization and specificity. For a fair comparison, the principal components of the
PCA models are contrasted with the latent parameters of the “Handy++” model. In
addition, to showcase the superiority of the proposed large scale dataset compared to the
30-subjects dataset used to train MANO, the compactness of the two PCA models is also
reported. The three models were tested on the test split of the MANO dataset. To fairly
compare the two PCA models, Handy and MANO, a variation of the Handy that utilizes
the MANO template as described in Section 3.3.2, is also reported. Note that only the
first 10 out of 31 principal components of MANO are publicly available.

Compactness. In Figure 3.11 , the compactness of the two models is reported. Compact-
ness refers to the percentage of variance in the training dataset explained by the model for
a given number of retained principal components. The figure shows that Handy model,
trained on the proposed large scale dataset, better explains the variations in the dataset,
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Figure 3.10: Evaluation of generalization and specificity against Handy and MANO mod-
els. The number of latent parameters refer to the number of principal components retained
for the PCA models (Handy and MANO) or to the latent space size of Handy++.

Figure 3.11: Evaluation of compactness between Handy and MANO models.

reaching the threshold of 90% variance from the 5th component, compared to the MANO
model which reaches 90% variance at the 9th component.

Generalization demonstrates the ability of the model to generate new hand instances that
were not present in the training set. To evaluate the models in terms of generalization, the
MANO test set is utilized. In particular, the generalization error is measured as the mean
per-vertex distance of each mesh on the MANO test set and its corresponding model re-
projection. Figure 3.10 (left) reveals that the proposed “Handy++” model achieves better
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out-of-distribution generalization and lower standard deviation compared to PCA models,
MANO and Handy. More specifically, “Handy++” achieves a generalisation error lower
than 2mm using a latent size lower than 10, compared to MANO that fails to generate
novel hand shapes and has a 3.7mm error using 10 components. This highlights the
argument that the mesh convolution autoencoder can attain more diverse samples using
more compact representations.

Specificity. Finally, the specificity error is reported, which measures the realism of the
generated hand shapes and their similarity to the training samples. The specificity error
can be described as the distance of a generated sample from the model with its closest
sample on the dataset. In practice, to measure the specificity error, 1,000 hand shapes
were generated from each model and the per-vertex distance from the closest sample in the
ground-truth datasets was measured. Similar to [125], given the small amount of training
data we measure specificity on the training set. For a fair comparison, the samples used to
train each model serve as ground-truth shapes. Figure 3.10 (right) shows that the proposed
method Handy++ results into less specificity error compared to the MANO model by
approximately 3.5mm. Furthermore, the proposed graph based autoencoder outperforms
PCA-based Handy, by 1mm while at the same time it achieves lower deviation. Note that
the slight deviation between the Handy and the Handy w/MANO models is attributed
by the high resolution (8704 vertices) of the proposed hand template which leads to more
detailed shapes compared to the MANO template (778 vertices).

3.4.2 Reconstruction of children’s hands

A major limitation of current state-of-the-art hand models is that they were trained using
limited data from specific age groups that do not reflect real hand variations. Given that
the anatomy of children’s hand is completely different compared to adult hand, current
hand models fail to accurately reconstruct them. In this experiment, the case of recon-
structing children’s hand below the age of 12 was examined. Using 20 children hands
that were not present in the training set, a fitting process was performed for each of the
models. Table 3.2 highlights the reconstruction capabilities of the proposed hand model
that was built with 1208 subjects with diverse age groups compared to the commonly
used MANO model, which is composed of only 31 adult hands. Figure 3.12 shows the
color-coded per vertex error which validates the superiority of the proposed model in chil-
dren’s hands reconstructions. As expected, MANO model fails to properly reconstruct the
main anatomical difference between adults’ and children’s hands, which mostly lies on the
back of the hand. Comparing the proposed Handy++ with Handy, it can be easily seen
that Handy++ manages to attain almost half of the reconstruction error using the same
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Table 3.2: Per vertex reconstruction error on 20 children’s hands in mm (12 of them are
less than 8 years old). We also report the performance of Handy with the MANO template
(w/MANO) and use a different number of components (!!) and latent codes (!") for a
fair comparison. Bold denotes the best performance.

Age <8 Age <12
MANO [2] 0.78 0.77
Handy w/ MANO (!! = 10) 0.48 0.44
Handy w/ MANO (!! = 30) 0.28 0.25
Handy (!! = 10) 0.44 0.42
Handy (!! = 30) 0.24 0.21
Handy++ (!" = 8) 0.20 0.19
Handy++ (!" = 30) 0.12 0.12

latent space size. Although more latent components could lead to even better results for
“Handy++”, as shown in Figure 3.10, a latent space of 8 components was used to show-
case the superiority of “Handy++” using such a compact latent representation. Visually,
as seen in Figure 3.12, this formulates to a small error, in almost all parts of the hand.

Figure 3.12: Color coded average reconstruction error of children’s hands. The latent size
of Handy++ is denoted by !" whereas !! corresponds to the components of the PCA
models.
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Figure 3.13: Hand shape and appearance reconstructions from single “in-the-wild” images.
From left to right: i) “in-the-wild” image, ii) Handy-Shape reconstruction, iii) Handy-GAN
result, iv) Handy-PCA model, and v) the HTML [8] texture on top of the shape mesh
reconstructed using Handy++.
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3.4.3 3D Reconstruction from single images

Following the pathway of many hand pose estimation methods, a synthetic dataset was
created to train the hand reconstruction model. In particular, 30,000 texture images
were generated from the GAN model to curate a synthetic dataset with textured hands.
To increase the realism of the synthetic data, similar to [88], hands were rendered while
interacting with objects of the ShapeNet dataset. The hands were also stitched to the
SMPL body model using random shapes. In contrast to the Obman dataset [88], high
resolution hand textures were used to bridge the domain gap between synthetic and ”in-
the-wild” hand images. To increase the diversity of the synthetic renderings, several
illuminations, lighting, and camera configurations were used. In total, 90.000 synthetic
images were created to trained the proposed regression model. Samples of the generated
synthetic dataset are illustrated in Figure 3.14.

Figure 3.14: Samples of the synthetic dataset.

In order to leverage the latent space of the proposed Handy++ model, an off-the-shelf
method [87, 88, 126] was modified by substituting the MANO parametric model with
Handy++. For comparison reasons, Handy and MANO models were also used as a shape
decoders. Unlike previous methods that neglect the texture reconstruction, two extra
branches were added to regress the latent space w of the texture model and the camera
configuration (Q, t). The network was trained using a set of loss functions that enable
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accurate hand pose, shape, and appearance estimation. In particular, similar to [87, 88, 1],
a loss was applied on both the latent shape and pose parameters and the generated 3D
vertex positions to enforce shape and pose estimation:

L: = ‖! − !̂‖2, L/ = ‖" − "̂ ‖2

L3* =
∑
'

‖v' − v̂' ‖2
(3.6)

where !, " , v denote the predicted shape, pose and vertex positions, respectively, and
!̂, "̂ , v̂ their corresponding ground-truth values.

To precisely generate hand textures, a combination of loss functions was used. Given that
the synthetic data were rendered using known ground-truth UV maps, the model was
directly enforced to produce textures that match the ground-truth UV maps with a UV
loss:

L9; = ‖RS G −RS0‖1 (3.7)

whereRS G corresponds to the generated UV texture andRS< to the ground-truth texture.

Additionally, a differentiable renderer was used using an orthographic camera with train-
able parameters that projects the generated 3D hand on the input image plane. A pixel
loss between the rendered image and the input image was utilized in order to obtain
accurate camera parameters and model the details of the appearance:

L8'= = ‖TR − T0‖1 (3.8)

with TR , T0 the original and the rendered images, respectively.

Finally, to constrain the generated hand textures, a perceptual loss [127] was applied that
imposes the texture model to produce realistic textures that match the input image:

L7 8' 8# = F (TR , T0) (3.9)

The overall loss can be then defined as follows:

L = L3* + 0.1L9; + 0.1L8'= + 0.01L7 8' 8# + 10L: + 10L/ (3.10)

Although synthetic data can be sufficient to train a hand pose and appearance estimation
network, they usually constrain the texture regressor to latent codes that lie within the
distribution of the textures, failing to reconstruct more challenging textures. In order to
boost high fidelity appearance reconstruction, a set of “in-the-wild” images was collected
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and their corresponding Handy pose, shape and texture parameters were predicted using
the pre-trained regression network. Then, similar to [128], only the texture parameters
w were further optimized in order to generate high resolution textures that match the
appearance of the “in-the-wild” images. The optimization function is constructed with
Eq. 3.8, 3.10, along with a $2 regularization on w to secure that it does not greatly
deviate from the initial estimation. Once the improved w′ were acquired, a fine-tuning
process of the regression network on the “in-the-wild” dataset was performed.

Implementation Details:
The 3D reconstruction method from single images is composed by three main components.
The first module is a ResNet50 network, pretrained on ImageNet, that acts as a feature
extractor. Following that, a set of regression branches that predict the latent parameters
of the Handy model. In the case of Handy this translates to shape, pose and texture
parameters whereas in the case of Handy++ model, the regression branches regresses only
the decoder latent space along with the texture parameters. Finally, the last module of
the proposed method predicts the parameters (scale and translation) of an orthographic
camera that is used to render the predicted hand mesh back to the image space. All
of the aforementioned branches are composed by an MLP layer and take as input the
latent features of ResNet. The full architecture is depicted in Figure 3.15. The proposed
architecture is trained for 250 epochs with the Adam optimizer and a learning rate of 5e-5.

Figure 3.15: Architecture of the proposed 3d hand reconstruction method. The ResNet
latent features are processed by three parallel regression methods, i.e. hand shape/pose
regressor with parameters z, texture regressor with parameters w and the camera regressor
predicting camera parameters.

Reconstruction under controlled Conditions:
To quantitatively assess the texture reconstruction of the proposed method, images from
the scanning device were utilized. In such case, the corresponding UV maps of each subject
acquired after the registration step can act as ground-truth UV textures. As it can be
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Table 3.3: Quantitative comparison between the texture reconstruction models under
controlled conditions.

Method $1 (×10−2) LPIPS [127]
HTML 2.14 0.092
Handy-PCA 1.44 0.065
Handy-GAN 0.47 0.010

observed from the figures reported in Table 3.3, the proposed texture model outperforms
the HTML model by a significant margin, in terms of $1 and LPIPS losses. The superiority
of the proposed method can be also validated in Figure 3.16. To properly compare the
texture reconstruction of each method, all three methods share the same shape and pose
extracted from the proposed regression network. The proposed method can reconstruct
high frequency details of the input image such as wrinkles, rings, tattoos, and nail polish.
In contrast, PCA-based methods produce smooth results that lack high frequency details
and even fail to properly reconstruct the skin color (Figure 3.16, row 2).

Reconstruction from “in-the-wild” images:
Furthermore, the proposed method was qualitatively compared against the HTML method
in an unconstrained setting using “in-the-wild” images. In Figure 3.13, a comparison
between the three methods is depicted, using challenging figures with different skin col-
ors, shape structures, and light conditions. Similar to the previous experiment, all three
methods share the same shape and pose. As can be easily observed, Handy-GAN can
reconstruct high frequency details such as wrinkles and precise hand colors, even with
hands that are out of the trained distribution. It is also important to note that Handy-
GAN can also reconstruct textures from hands with vitiligo disorder that have severe color
discontinuities.

Finally, to quantitatively evaluate shape and pose reconstruction under “in-the-wild” con-
ditions, the proposed model was compared with several state-of-the-art models along with
the PCA alternatives on the popular benchmark dataset FreiHand [1]. Table 3.4 shows that
the proposed method outperforms current state-of-the-art model-based methods utilizing
MANO as their backbone. It is also important to note that, as expected, the proposed
method trained on the proposed synthetic dataset (w/Synthetic), achieves better hand re-
constructions compared to the method trained with the Obman dataset [88] (w/Obman).
This finding highlights and validates the assumptions that the proposed synthetic dataset
bridges the domain gap between synthetic and “in-the-wild” images. Finally, it is worth
mentioning that although the PCA-based Handy achieves remarkable results compared to
MANO model, it can not compete the neural mesh autoencoder Handy++ which is able
to achieve even 1.4mm less reconstruction error. Qualitative results of the proposed hand

48



Figure 3.16: Hand shape and appearance reconstructions from single images under con-
trolled conditions.

reconstruction are shown in Figure 3.17.
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Method MPVPE ↓ MPJPE ↓ F@5 mm ↑ F@15 mm ↑
Hasson et.al.[88] 13.2 - 0.436 0.908
Boukhayma et.al.[87] 13. - 0.435 0.898
MANO CNN [1] 10.8 0.529 0.935
MANO FIT [1] 13.7 - 0.439 0.892
HTML [8] 11.1 11.0 0.508 0.930
S2Hand [129] 11.8 11.9 0.481 0.920
Ren et.al.[130] 8.1 8.0 0.649 0.966
Handy w/Obman 9.9 9.7 0.572 0.922
Handy++ w/Obman 8.5 8.6 0.624 0.946
Handy w/Synthetic 8.8 8.7 0.612 0.952
Handy++ w/Synthetic 7.8 7.7 0.662 0.964
Handy 7.8 7.8 0.654 0.971
Handy++ 6.9 7.1 0.701 0.987

Table 3.4: Quantitative comparison on the FreiHand dataset [1]. We evaluate the proposed
and the baseline methods in terms of mean per joint position error (MPJPE), mean per
vertex position error (MPVPE). Additionally, we report F-score at a given threshold d
(F@d) which is the harmonic mean of precision and recall.

Figure 3.17: Shape and pose reconstructions from the FreiHand [1] and the proposed
synthetic dataset.

3.4.4 Reconstruction from Point Clouds

Apart from the reconstruction from single images, the proposed method was also evalu-
ated on shape and pose reconstructions from point clouds. In particular, the proposed
Handy++ model was compared with the state-of-the-art implicit hand model LISA [85]
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on the registered MANO dataset [2]. Following [85], 100= points were sampled from the
surface of the MANO scans and a fitting optimization was performed using the Chamfer
distance between the sampled points and Handy template. To evaluate the fitting, the
vertex-to-point distances (in mm) from the reconstruction to the scan (R2S) point cloud
and the other way around (S2R) were measured. Table 3.5 shows that the proposed model
achieves a lower reconstruction error with only 8 latent codes, which translates to less than
10 shape components, outperforming LISA, MANO and Handy models.

Table 3.5: Reconstruction error on point clouds sampled from the MANO dataset [2].
R2S [mm] S2R [mm]

MANO [2] 2.90 1.52
LISA-im [85] 1.96 1.13
LISA [85] 0.64 0.58
Handy w/MANO (!! = 10) 0.21 0.29
Handy w/MANO (!! = 30) 0.12 0.21
Handy (!! = 10) 0.16 0.25
Handy (!! = 30) 0.11 0.19
Handy++ (!" = 8) 0.08 0.12

3.5 Conclusion

In this chapter, the first large-scale shape and appearance hand model, named Handy++,
was introduced and presented. The proposed model was trained with over 1200 subjects
with large demographic diversity, overcoming the limitations of previous parametric mod-
els to reconstruct hands from diverse distributions, such as the shape of children’s hands.
The proposed model is structured with an encoder-decoder architecture that utilizes spiral
mesh convolutions. In contrast to traditional linear PCA models, the graph-based model
gains more expressive power and manages to outperform PCA models while having more
compact representations. Additionally, a style-based GAN was trained to generate UV tex-
tures with high frequency details that traditional PCA methods fail to model. Extending
comparison experiments showcase that Handy++ achieves remarkable results highlight-
ing and demonstrating its expressive power to reconstruct challenging hand shapes and
appearances.
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T he recent advances in deep learning have significantly pushed the state-of-the-
art in photorealistic video animation given a single image. In this chapter, those

advances are extrapolated to the 3D domain, by studying 3D image-to-video trans-
lation with a particular focus on dynamic 3D facial expressions. Although 3D facial
generative models have been widely explored during the past years, 3D animation re-
mains relatively unexplored. To this end, a deep mesh encoder-decoder like architecture
was employed to synthesize realistic high resolution facial expressions by using a single
neutral frame along with an expression identification. In addition, processing 3D meshes
remains a non-trivial task compared to data that live on grid-like structures, such as im-
ages. Given the recent progress in mesh processing with graph convolutions, a recently
introduced learnable operator was utilized, which acts directly on the mesh structure by
taking advantage of local vertex orderings. In order to generalize to 4D facial expressions
across subjects, the proposed model was trained using a high resolution dataset with 4D
scans of six facial expressions from 180 subjects [131]. Experimental results demonstrate
that the proposed approach preserves the subject’s identity characteristics even for unseen
subjects and generates high quality expressions.
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4.1 Introduction

Recently, facial animation has received attention from the industrial graphics, gaming and
filming communities. Face is capable to impart a wide range of information not only about
the subject’s emotional state but also about the tension of the moment in general. An
engaged and crucial task is 3D avatar animation, that has lately become feasible [132].
With modern technology, a 3D avatar can be generated by a single uncalibrated camera
[133] or even by a self portrait image [134]. At the same time, capturing facial expression
is an important task in order to perceive behaviour and emotions of people. To tackle
the problem of facial expression generation, it is essential to understand and model facial
muscle activations that are related to various emotions. Several studies have attempted
to decompose facial expressions on two dimensional spaces such as images and videos
[135, 136, 137, 138]. However, modeling facial expressions on high resolution 3D meshes
remains unexplored.

In contrast, few studies have attempted 3D speech-driven facial animation exclusively
based on vocal audio and identity information [139, 140]. Nevertheless, emotional reactions
of a subject are not always expressed vocally and speech-driven facial animation approaches
neglect the importance of facial expressions. For instance, sadness and happiness are two
very common emotions that can be voiced, mainly, through facial deformation. To this
end, facial expressions are a major component of entertainment industry, and can convey
emotional state of both scene and identity.

People signify their emotions using facial expressions in similar manners. For instance,
people express their happiness by mouth and cheek deformations, that vary according
to the subject’s emotional state and characteristics. Thus, one can describe expressions
as “unimodal” distributions [137], with gradual changes from the neutral model till the
apex state. Similarly to speech signals, emotion expressions are highly correlated to facial
motion, but lie in two different domains. Modeling the relation between these two domains
is essential for the task of realistic facial animation. However, in order to disentangle
identity information and facial expression it is essential to have a sufficient amount of
data. Although most of the publicly available 3D datasets contain a large variety of facial
expression, they are captured only from a few subjects. Due to this difficulty, prior work
has only focused on generating expressions in 2D.

In this chapter a concrete methodology is presented for the generation of 3D facial an-
imation given a target expression and a static neutral face. Synthesis of facial expression
generation on new subjects can be achieved by expression transfer of generalized deform-
ations [141, 136]. In order to produce realistic expressions, the modeling of the facial

54



animation is done directly on the mesh space, avoiding to focus on specific face land-
marks. Specifically, the proposed method comprises two parts: (a) a recurrent LSTM
encoder to project the expected expression motion to an expression latent space, and (b)
a mesh decoder to decode each latent time-sample to a mesh deformation, which is added
to the neutral expression identity mesh. The mesh decoder utilizes intrinsic lightweight
mesh convolutions, introduced in [7], along with unpooling operations that act directly on
the mesh space [122]. The model was trained in an end-to-end fashion on a large scale 4D
face dataset.

To summarize the contributions of the work presented in this chapter are:

• A methodology that tackles a novel and unexplored problem, i.e. the generation of
4D expressions given a single neutral expression mesh.

• A method that considerably deviates from methods in the literature as it can be
used to generate 4D full-face customised expressions on real-time.

• A fully customisable method where both the desired length and the target expression
can be controlled by the user.

• The first 3D facial animation framework that utilizes an intrinsic encoder-decoder
architecture that operates directly on mesh space using mesh convolutions instead
of fully connected layers, as opposed to state-of-the-art methods like [140, 139].

4.2 Related Work

Facial animation generation

Following the progress of 3D Morphable Models (3DMMs), several approaches have at-
tempted to decouple expression and identity subspaces and built linear [142, 143, 144] and
nonlinear [145, 122, 7] expression morphable models. However, all of the aforementioned
studies are focused on static 3D meshes and they cannot model 3D facial motion. Recently,
a few studies attempted to model the relation between speech and facial deformation for
the task of 3D facial motion synthesis. Although 3D generation and 3DMMs are widely
explored, there are just a few studies that focus on synthesis of 3D facial motion. In
particular, most of these studies focus on the relation between speech and facial deforma-
tions. Karras et al. [139] modeled speech formant relationships with 5K vertex positions,
generating facial motion from LPC audio features. While this was the first approach to
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tackle facial motion directly on 3D meshes, their model is subject specific and cannot be
generalized across different subjects. Towards the same direction, in [140], facial anim-
ation was generated using a static neutral template of the identity and a speech signal,
used along with DeepSpeech [146] to generate more robust speech features. A different
approach was utilized in [147], where 3D facial motion is generated by regressing on a
set of action units, given MFCC audio features processed by Recurrent Neural Network
(RNN) units. However, their model is trained on parameters extracted from 2D videos
instead of 3D scans. Similarly, Pham et al. [148] used spatio-temporal convolutions to
synthesize facial animation from speech using a blendshape model driven by action unit
intensities. Tzirakis et al. [149] combined predicted blendshape coefficients with a mean
face to synthesize 3D facial motion from speech, replacing also fully connected layers, util-
ized in previous studies, with an LSTM. Blendshape coefficients are also predicted from
audio, using attentive LSTMs in [150]. In contrast with the aforementioned studies, the
proposed method aims to model facial animations directly on 3D meshes. Furthermore,
although blendshape coefficients might be easily modeled, they rely on predefined face
rigs, a factor that limits their generalization to new unseen subjects. Recently, Otberdout
et al. [151] proposed a similar method that is able to regress dense 3D faces from sparse
landmarks

Facial Expression datasets

Another major reason that 4D generative models have not been widely exploited is due
to the limited amount of 3D datasets. During the past decade, several 3D face databases
have been published. However, most of them are static [152, 153, 154, 155, 156, 157, 158],
consisted of few subjects [122, 159, 160, 161], and have limited [162, 163, 153] or spontan-
eous expressions [164, 165], making them inappropriate for tasks such as facial expression
synthesis. On the other hand, the recently proposed 4DFAB dataset [131] consists of six
3D dynamic facial expressions (from 180 subjects), which is ideal for subject independent
facial expression generation. In contrast with all previously mentioned datasets, 4DFAB,
due to the high range of subjects, presents and offers a promising resource towards disen-
tangling facial expression from the identity information.

4.3 Method

The overall architecture of the proposed model is structured by two major components
(see Figure 4.1). The first component implements a temporal encoder, using an LSTM
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Figure 4.1: Network architecture of the proposed method.

layer that encodes the expected facial motion of the target expression. It takes as input a
temporal signal / ∈ O6×+ with length < , equal to the target facial expression, also equipped
with information about the time-stamps that show when the generated facial expression
reaches onset, apex and offset modes. Each time-frame of signal / can be characterised as
a one-hot encoding of one of the six expressions, with amplitude that indicates the scale
of the expression. The second component of the proposed network consists of a frame
decoder, with four layers of Spiral mesh convolutions [7], where each one is followed by an
upsampling layer. Each upsampling layer increases the number of vertices by five times,
and every mesh convolution is followed by a ReLU activation [166]. Finally, the output
of the decoder is added to the identity neutral face. Given a time sample from the latent
space, the frame decoder network models the expected deformations on the neutral face.
Each output time frame can be expressed as:

8̂> = % (J> ) + 8'? ,
J> = U (/> )

(4.1)

where % (·) denotes the mesh decoder network, U (·) the LSTM encoder, /> the facial
motion information for time-frame 1 and 8'? the neutral face of the identity. The network
details can be found in Table 4.1. The proposed model was trained for 100 epochs with
learning rate of 0.001 and a weight decay of 0.99 on every epoch. Adam optimizer [167]
was used with a 5e-5 weight decay.

Loss function. The mesh decoder network outputs motion deformation for each time-
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frame with respect to the expected facial animation. To train the proposed model both
the reconstruction error $% and the temporal coherence $! were optimized, as proposed in
[139]. Specifically, the loss function between the generated time frame 8̂> and its ground
truth 8> value is defined as:

$% (8̂> , 8> ) = ‖8̂> − 8> ‖1

$! (8̂> , 8> ) = ‖ (8̂> − 8̂>−1) − (8> − 8>−1)‖1

$ (8̂> , 8> ) = $% (8̂> , 8> ) + $! (8̂> , 8> )
(4.2)

Although reconstruction loss term $% can be sufficient to encourage model to match ground
truth vertices at each time step, it may not produce high-quality realistic animation. On
the contrary, temporal coherence loss $! term ensures temporal stability of the generated
frames by matching the distances between consecutive ground truth frames and generated
expressions.

Table 4.1: Mesh Decoder architecture
Layer Input Dimension Output Dimension
Fully Connected 64 46x64
Upsampling 46x64 228x64
Convolution 228x64 228x32
Upsampling 228x32 1138x32
Convolution 1138x32 1138x16
Upsampling 1138x16 5687x16
Convolution 5687x16 5687x8
Upsampling 5687x8 28431x8
Convolution 28431x8 28431x3

4.4 Experiments

4.4.1 Dynamic 3D face database

To train the proposed expression generative model the recently published 4DFAB [131]
was used. 4DFAB contains dynamic 3D meshes of 180 people (60 females, 120 males)
with ages between 5 to 75 years. The devised meshes display a variety of complex and
exaggerated facial expressions, namely happy, sad, surprise, angry, disgust and fear. The
4DFAB database displays high variance in terms of ethnicity origins, including subjects
from more than 30 different ethnic groups. The dataset was split into 153 subjects for
training and 27 for testing. The data were captured with 60fps, thus each expression is
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sampled every approximately 5 frames in order to allow the proposed model to generate
extreme facial deformations. Given the high quality of the data (each mesh is composed
by 28K vertices) as well as the relatively big number of subjects, 4DFAB presents a rich
and rather challenging choice for training generative models.

Expression Motion Labels

In this study, the assumption that each expression can be characterised by four phases of
its evolution (see Figure 4.2) is used. First, the subject starts from a neutral pose and
at a certain point their face starts to deform, in order to express their emotional state.
This phase is called the onset phase. After the subject’s expression reaches its apex state,
it will start again its deformation from the peak emotional state until it resides to its
neutral state again. This phase is called offset phase. Thus, each time frame is assigned
a label that reflects its emotional state phase. The emotional state is considered as a
value ranging from 0 to 1 assigned to each frame, with 0 representing the neutral phase
and 1 the apex phase. Onset and offset phases are represented via a linear interpolation
between the apex and neutral phases (see Figure 4.2). However, expressions may also
range in terms of extremeness, i.e. the level of intensity in subject’s expression. To let
the proposed model learn diverse extremeness levels for each expression, it is essential to
scale each expression motion label from [0, 1] to [0, Q'], where Q' ∈ (0, 1] represents the
scaled value of the apex state according to the intensity of the expression. Intuitively, the
extremeness of each expression is proportional to the absolute mean deformation of the
expression, thus scaling factor Q' can be calculated as:

Q' =
VW,H(,"−@&

3&
) + 1

2 (4.3)

where 6' is a scalar value representing the absolute value of the mean deformation of
the sequence from neutral frame and BA, #A the mean and standart deviation of the
deformation of the respective expression. Clip() function is used to clip values to [-1,1].

4.4.2 Dynamic Facial Expressions

The proposed model for the generation of facial expressions is assessed both qualitatively
and quantitatively. The model is trained by feeding the neutral frame of each subject
and the manifested motion (i.e. the time-frames where the expression reaches onset, apex
and offset modes) of the target expression. The performance of the proposed model was
evaluated by its ability to generate expressions of 27 unobserved test subjects. To this
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Figure 4.2: Sample subjects from the 4DFAB database posing an expression along with
expression motion labels.

end, the reconstruction loss as the per-vertex Euclidean distance between each generated
sample and its corresponding ground truth was calculated.

Baseline. As a comparison baseline an expression blendshape decoder was used, that
transforms the latent representation J> of each time-frame, i.e. the LSTM outputs, to an
output mesh. In particular, expression blendshapes were modeled by first subtracting the
neutral face of each subject to its corresponding expression, for all the corresponding video
frames. With this operation its is possible to capture and model just the motion deform-
ation of each expression. Then, Principal Component Analysis (PCA) was applied to the
motion deformations to reduce each expression to a latent vector. For a fair comparison,
the same latent size was used for both the baseline and the proposed method.

The results presented in Table 4.2 show that the proposed model outperforms the baseline
with regards to all the expressions, as well as on the entire dataset (0.39mm vs 0.44mm).

Table 4.2: Generalization per-vertex loss over all expressions, along with the total loss.
Model Happy Angry Sad Surprise Fear Disgust Total
PCA - Baseline 0.49 0.37 0.37 0.48 0.43 0.45 0.44
Proposed 0.37 0.35 0.36 0.43 0.42 0.42 0.39

Moreover, as observed by inspecting in Figure 4.3, the proposed method can produce more
realistic animations, especially in the mouth region, compared to PCA blendshapes. Error
visualizations in Figure 4.3, showcase that the blendshape model produces mild transitions
between each frame and cannot generate extreme deformations. Note also that the errors
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of the proposed method are mostly centered around the mouth and the eyebrows, due
to the fact that the proposed model is subject independent and each identity expresses
its emotions in different ways and varying extents. In other words, the proposed method
models each expression with respect to the motion labels without taking into account
identity information, thus the generated expressions can have some variations compared
to the ground truth subject-dependent expression.

Figure 4.3: Color heatmap visualization of error metric of both baseline (top rows) and
proposed (bottom rows) model against the ground truth test data for four different ex-
pressions.

For a subjective qualitative assessment, Figure 4.4 shows several expressions that were
generated by the proposed method.

4.4.3 Classification of generated 4D expressions

To further assess the quality of the generated expressions a classifier was trained to identify
expressions. The architecture of the classifier is based on a projection on the PCA space
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Figure 4.4: Frames of generated expressions along with their expected motion labels: Fear,
Angry, Surprise, Sad, Happy, Disgust (from top to bottom).
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followed by three fully connected layers. The sequence classification is performed in two
steps. In particular, first 64-PCA coefficients were computed to represent all expression
and deformation variations of the training set and then a frame encoder was used to map
the unseen test data to the latent space. Following that, the latent representations of
each frame were concatenated and processed by fully-connected layers in order to predict
the expression of the given sequence. The network was trained on the same training set
that was originally used for the generation of expressions, with Adam optimizer and 5e-3
weight decay for 13 epochs. Table 4.3 presents the achieved classification performance for
the ground truth test data and the generated data from the proposed model and from the
baseline model, respectively.

Table 4.3: Constructing classification performance between ground truth (test) data, gen-
erated (by the proposed method) data, and the blendshape baseline.

PCA - Baseline Proposed Ground Truth
Pre Rec F1 Pre Rec F1 Pre Rec F1

Surprise 0.69 0.62 0.65 0.74 0.90 0.81 0.69 0.83 0.75
Angry 0.67 0.55 0.60 0.75 0.52 0.61 0.81 0.59 0.60
Disgust 0.51 0.72 0.60 0.65 0.83 0.73 0.58 0.72 0.65
Fear 0.59 0.36 0.44 0.67 0.43 0.52 0.64 0.32 0.43
Happy 0.63 0.59 0.60 0.71 0.86 0.78 0.73 0.93 0.82
Sad 0.43 0.57 0.49 0.62 0.60 0.61 0.74 0.77 0.75
Total 0.58 0.57 0.57 0.69 0.69 0.68 0.70 0.70 0.68

As can be observed from the figures in Table 4.3, the generated data from the proposed
model achieve similar classification performance with ground truth data across almost
every expression. In particular, the generated surprise, disgust and fear expressions gen-
erated by the proposed model can be even easier classified compared to the ground truth
test data. Note also that both ground truth data and the data generated by the proposed
model achieve 0.68 F1-score in total.

4.4.4 Loss per frame

Since the overall loss is calculated for all frames of the generated expression, it is not
possible to assess the ability of the proposed model to generate the onset, apex, and offset
of each expression with low error-rate. The performance of the model on each expression
phase was evaluated by calculating the average $1 distance between the generated and
corresponding ground truth frame for each frame of the evolved expression. Figure 4.5
illustrates that the apex phase, typically occurring between time-frames 30-80, exhibits
an increased $1 error for both models. However, the proposed method demonstrates a
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stable loss of approximately 0.45mm throughout the apex phase, whereas the blendshape
baseline struggles to model the extreme deformations characteristic of the apex phase of
the expression.

Figure 4.5: Average per-frame $1 error between the proposed method and the PCA-based
blendshape baseline.

4.4.5 Interpolation on the latent space

To qualitatively evaluate the representation power of the proposed LSTM encoder, linear
interpolation was applied to the expression latent space. Specifically, two different apex
expression labels were chosen from the test set and encoded using the LSTM encoder to
two latent variables J0 and J1, each one of size 64. All intermediate encodings were then
produced by linearly interpolating the line between them, i.e., JB = CJ1 + (1 − C)J0, where
C ∈ (0, 1). The latent samples JB were subsequently fed to the mesh decoder network.
The interpolations between different expressions are visualized in Figure 4.6.

4.4.6 Expression generation in-the-wild

Given the significance of expression generation in graphics and film industries, a real-
world application of the 3D facial expression generator is proposed. In particular, several
image pairs with neutral and various expressions of the same identity were collected for
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Figure 4.6: Interpolation on the latent space between different expressions.

the purpose of realistically synthesizing the 4D animation of the target expression. To
acquire a neutral 3D template for animation purposes, a fitting methodology was applied
to the neutral image as proposed in [9]. Utilizing the fitted neutral mesh, the proposed
model was employed to generate several target expressions, as shown in Figure 4.7. The
proposed method demonstrates the ability to synthesize a series of realistic 3D facial
expressions, showcasing the framework’s capability to animate a template mesh with a
desired expression. To qualitative evaluate the similarity of the generated expression with
the target expression of the same identity, GANFit [9] was fitted on a different image of
the identity posing the desired expression.

4.5 Limitations and Future Work

Although the proposed framework can model and generate a wide range of realistic ex-
pressions, it cannot thoroughly model extreme variations. As mentioned in section 4.4.1,
an attempt was made to adapt the extremeness variations of each subject into the train-
ing procedure using an intuitive scaling trick. However, it is not certain that the mean
absolute deformation of each mesh always accurately represents the extremeness of the
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Figure 4.7: Generation of expressions in-the-wild form 2D images. Both left and right
fitted 3D faces are obtained using GANFit [9].

conducted expression. Furthermore, due to the limited number of subjects, a generic
model was built. Using this formulation, the model learns to generate displacements given
a certain expression label, which results in deterministic facial expressions. To overcome
this limitation, future work will involve extending the training procedure by including
more datasets and increasing the number of subjects to create a person-specific expression
model. Using a subject specific model, one can generate expressions conditioned on the
identity, which can better approximate realistic expressions. Thus, one of the future tasks
is to adjust the model in order to generate fully-customized realistic expressions. Also,
although the proposed model can model and generate a wide range of realistic expres-
sions, strict definition of the extremeness of each target expression is not possible. This
is because the deformation motion labels values range between (0,1), with 0 denoting the
neutral expression and 1 representing the apex of each expression. However, candidates in
the 4DFAB database express their emotions at different levels of intensity, ranging from
moderate to extreme deformations, while in the proposed annotation, apex expressions
are always assigned a value of 1. One of the future tasks is to take into consideration
the range of each deformation and enhance the proposed model with a user-customizable
parameter that could be utilized to control the level of expression. In addition, in order
to synthesize realistic facial animation, it is essential to model facial wrinkles along with
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shape deformations for each expression. Thus, an attempt will be made to generalize fa-
cial expression animation to include both shape and texture by extrapolating the proposed
model to texture predictions.

4.6 Conclusion

In this chapter, the first generative model is proposed to synthesize 3D dynamic facial
expressions from a still neutral 3D mesh. The model captures both local and global ex-
pression deformations using graph-based upsampling and convolution operators. Given
a neutral expression mesh of a subject and a time signal that conditions the expected
expression motion, the model generates dynamic facial expressions for the same subject
that respect the time conditions and the anticipated expression. This is achieved by com-
pressing the expression timeline information to a latent space using RNNs and decoding
the respective latent representations with spiral mesh convolutions. The proposed method
models the animation of each expression and deforms the neutral face of each subject ac-
cording to a desired motion. Both expression and motion can be fully defined by the user.
Results demonstrate that the proposed method outperforms expression blendshapes and
creates motion-consistent deformations, validated both qualitatively and quantitatively.
Additionally, an assessment was conducted to determine whether the generated expres-
sions can be correctly classified and identified by a classifier trained on the same dataset.
Classification results support the qualitative findings, showing that the generated data
can be similarly classified compared to the ones created by the blendshapes model. In
summary, the proposed model is the first attempt to synthesize realistic and high-quality
facial expressions from a single neutral face input.
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T he recent advances in 3D sensing technology have made possible the capture of
point clouds in significantly high resolution. However, increased detail usually

comes at the expense of high storage, as well as computational costs in terms of
processing and visualization operations. Mesh and Point Cloud simplification methods aim
to reduce the complexity of 3D models while retaining visual quality and relevant salient
features. Traditional simplification techniques usually rely on solving a time-consuming
optimization problem, hence they are impractical for large-scale datasets. In an attempt to
alleviate the computational burden, a fast point cloud simplification method is proposed,
which involves learning to sample salient points. The proposed method relies on a graph
neural network architecture trained to select an arbitrary, user-defined, number of points
according to their latent encodings and re-arrange their positions so as to minimize the
visual perception error. The approach is extensively evaluated on various datasets using
several perceptual metrics. Importantly, the proposed method is able to generalize to
out-of-distribution shapes, hence demonstrating zero-shot capabilities.
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5.1 Introduction

The progress in sensing technologies has significantly expedited the 3D data acquisition
pipelines which in turn has increased the availability of large and diverse 3D datasets.
With a single 3D sensing device [168], one can capture a target surface and represent it as
a 3D object, with point clouds and meshes being the most popular representations. Several
applications, ranging from virtual reality and 3D avatar generation [169, 23] to 3D printing
and digitization of cultural heritage [170], depend from such representations. However, a
3D capturing device generates thousands of points per second, making processing, visu-
alization and storage of captured 3D objects a computationally daunting task. Often,
raw point sets contain an enormous amount of redundant and putatively noisy points
with low visual perceptual importance, which results into an unnecessary increase in the
storage costs. Thus real-time processing, rendering and editing applications require the
development of efficient simplification methods that discard excessive details and reduce
the size of the object, while preserving their significant visual characteristics. In contrast
to sampling methods that aim to preserve the overall point cloud structure, simplification
methods attempt to solve the non-trival task of preserving the semantics of the input
objects [171]. Visual semantics refer to the salient features of the object that mostly cor-
relate with human perception and determine its visual appearance in terms of curvature
and roughness characteristics of the shape [172, 173]. As can be easily observed in an
indicative case shown in Figure 5.1, effortless sampling techniques, such as Farthest Point
Sampling (FPS) or uniform sampling, can easily preserve the structure of a point cloud.
However, the preservation of perceptually visual characteristics, especially when combined
with structural preservation, remains a challenging task. Traditional simplification meth-
ods manage to retain the structural and the salient characteristics of large point clouds
[58, 174, 175] by constructing a point importance queue that sorts points according to
their scores at every iteration. However, apart from being very time demanding, such
optimizations are non-convex with increased computational requirements and can not be
generalized to different topologies. On the contrary, an end-to-end differentiable neural-
based simplification method could leverage the parallel processing of neural networks and
simplify batches of point clouds in one pass [24].
In this Chapter, the limitations of the literature on the task of point cloud simplifica-
tion are tackled, and the first learnable point cloud simplification method is proposed.
Motivated by the methods that highlight and demonstrate the importance of perceptual
saliency, a method is proposed that preserves both the salient features as well as the over-
all structure of the input. The method can be used for real-time point cloud simplification
without any prior surface reconstruction. The proposed method is fully differentiable,
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Figure 5.1: Point cloud simplified using FPS (left) smooths out facial characteristics of
the input whereas the proposed method preserves salient features of the input (right).

allowing for direct integration into any learnable pipeline without modification. Addition-
ally, a fast latent space clustering using FPS is introduced, which can benefit various fields
such as graph partitioning, generative models, and shape interpolation. The clustering
method serves as a fast and non-iterative alternative to differentiable clustering, guided
by the loss function for the selection of cluster centers. The limitations of popular distance
metrics, like the Chamfer distance, to capture salient details of the simplified models are
highlighted. Several evaluation criteria well-suited for simplification tasks are proposed.
The proposed method is extensively evaluated in a series of wide-ranging experiments.

5.2 Related Work

Point Cloud Simplification and Sampling

Similar to mesh simplification, iterative point selection and clustering techniques have
also been proposed for point clouds [174, 176, 177, 178, 175]. In particular, point cloud
simplification can be addressed either via mesh simplification where the points are fitted
to a surface and then simplified using traditional mesh simplification objectives [179, 180],
or via direct optimization on the point cloud where the points are selected and decimated
according to their estimated local properties [174, 176, 181, 178, 20]. However, similar to
mesh simplification, computationally expensive iterative optimization is needed, making
them inefficient for large scale point clouds. The point cloud simplification methodology
presented in this Chapter attempts to address and overcome the inefficiencies of the afore-
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mentioned approaches using a learnable alternative that works with arbitrary, user-defined
decimation factors.

In a different line of research, sampling methods rely on a point selection scheme that
focuses on retaining either the overall structure of the object or specific components of
the input. A huge difference between simplification and sampling is founded upon their
point selection perspective. Sampling methods are usually utilized for hierarchical learning
[22] in contrast to simplification methods that attempt to preserve as much of the visual
appearance of the input even at very low resolutions. Farthest Point Sampling (FPS) [182],
along with several modification of it, remains the most popular sampling choice and has
been widely used as a building block in deep learning pipelines [20, 22, 183]. Nevertheless,
as experimentally shown, FPS directly from the input xyz-space can not preserve sharp
details of the input and thus is not suitable for simplification tasks. Recently, several
methods [184, 185] have been proposed as a learnable alternative for task-driven sampling,
optimized for downstream tasks. However, they require the input point clouds to have
the same size which limits their usage to datasets with arbitrary topologies. In addition,
they explicitly generate the sampled output using linear layers which is not scalable to
large point clouds. Although the learnable sampling methods are closely related to the
proposed method, they only sample point clouds in a task-driven manner and as a result,
the preservation of the high frequency details of the point cloud is not ensured.

Assessment of Perceptual Visual Quality

Processes such as simplification, lossy compression and watermarking inevitably introduce
distortion to the 3D objects. Measuring the visual cost in rendered data is a long stud-
ied problem [186, 187]. Inspired by Image Quality Assessment measures, the objective
of Perceptual Visual Quality (PVQ) assessment is to measure the distortion of an object
in terms directly correlated with the Human Perceptual System (HPS). Several methods
have been proposed, acting directly on 3D positions, to measure the PVQ using Laplacian
distances [188], curvature statistics [189, 190, 191], dihedral angles [192] or per vertex
roughness [187]. Several studies [193, 194, 195, 196] utilized crowdsourcing platforms and
user subjective assessments to identify the most relevant geometric attributes that mostly
correlate with human perception. The findings demonstrated that curvature related fea-
tures along with dihedral angles and roughness indicate strong similarity with the HPS. In
this Chapter, curvature-related losses and quality measures were utilized to train and as-
sess the performance of the proposed model. These measures are referred to as perceptual
measures in this context.
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5.3 Method

5.3.1 Preliminaries: Point Curvature Estimation

Calculating the local surface properties of an unstructured point cloud is a non-trivial
problem. As demonstrated in [55, 174], covariance analysis can be an intuitive estimator
of the surface normals and curvature. In particular, considering a neighborhood N' around
the point p' ∈ R3 the covariance matrix can be defined as:

' =



p'1 − p'
p'2 − p'

...

p'' − p'



+

·



p'1 − p'
p'2 − p'

...

p'' − p'


∈ R |N" |× |N" | (5.1)

By solving the eigendecomposition of the covariance matrix C, the eigenvectors corres-
ponding to the principal eigenvalues define an orthogonal frame at point p'. The eigen-
values *' measure the variation along the axis defined by their corresponding eigenvector.
Intuitively, the eigenvectors that correspond to the largest eigenvalues span the tangent
plane at point p', whereas the eigenvector corresponding to the smallest eigenvalue can
be used to approximate the surface normal n'. Thus, given that the smallest eigenvalue
*0 measures the deviation of point p' from the surface, it can be used as an estimate of
point curvature. As shown in [174], the point curvature can be defined as:

X(p') =
*0

*0 + *1 + *2
, *0 < *1 < *2 (5.2)

as the local curvature estimate at point p' which is ideal for tasks such as point simpli-
fication. Using the previously estimated curvature at point p' the mean curvature can be
estimated as the Gaussian weighted average of the curvatures around the neighborhood
N':

K̄ (p') =

∑
(∈N"

X(p () exp (−‖p ( − p' ‖2/ℎ)
∑
(∈N"

exp (−‖p ( − p' ‖2/ℎ) (5.3)

where ℎ is a constant defining the neighborhood radius. Finally, an estimation of the
roughness can be defined as the difference between curvature and the mean curvature at
point p' as: R(p') = |X(p') − K̄ (p') |
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5.3.2 Model

The main building block of the proposed architecture is a graph neural network that re-
ceives at its input a point cloud (or a mesh) P1 with " points p' and outputs a simplified
version P2 with Y points, Y << ". It is important to note that the simplified point cloud
P2 does not need to be a subset of the original point set P1. The proposed model is com-
posed by three modules: the Projection Network, the Point Selector and the Refinement
Network. Figure 6.2 illustrates the architecture of the proposed method.
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Figure 5.2: Overview of the proposed method. Initially a point cloud (or a mesh) is passed
through a projection network (green) and embedded to a higher dimensional latent space.
FPS is used to select points from the set of latent representations (blue) that can be
conceived as cluster centers of the input. Finally, a k-NN graph is constructed between
the cluster centers and the input points that is used to modify their positions using the
refinement layer (purple).

Projection Network and Point Selector: In this chapter, sampling is formulated as a
clustering problem. The goal is to cluster points that share similar perceptual and struc-
tural features and represent the simplified point cloud using the cluster centers. To achieve
this, a Projector Network is designed to map (8, I, J) coordinates to a high-dimensional
space, where points with similar features are close in the latent space. Instead of sampling
directly from the Euclidean input space, the objective is to sample points that are em-
bedded in a high-dimensional latent space, capturing the perceptual characteristics of the
input. Clustering the latent space results in clusters with latent vectors of points that
share similar perceptual characteristics.

Based on the observations that Farthest Point Sampling (FPS) provides a simple and
intuitive technique to select points covering the point cloud structure [22], a sampling
module is built on top of this sampling strategy, where points are sampled from a high-
dimensional space instead of the input xyz-space. Although any clustering algorithm could
be adequate, the FPS module is utilized as it sufficiently covers the input space without
solving any optimization problem. Using this formulation, it is possible to interfere with

74



the selection process and transform it into a learnable module that is trained to select
point embeddings that cover the perceptual latent space, allowing the preservation of
both structural and perceptual salient features of the input.

Projector Network comprises of a multi-layer perceptron (MLP) applied to each point
independently, followed by a Graph Neural Network (GNN) that captures the local geo-
metric properties around each point. The update rule of the GNN layer is the following:

f ′' = W!f' +
1
N'

∑
(∈N"

W.f ( (5.4)

where f' denotes the output of the shared point-wise MLP for point p' and W!,W. rep-
resent learnable projection matrices. The connectivity between points can be given either
by the mesh triangulation or by a k-nn query in the input space (a small neighborhood
of + =7 was used as in [197]). Following the Projector Network, Point Selector utilizes
FPS to select points, i.e. cluster centers, based on their latent representations, in order
to cover the latent space. Given the cluster centers selected by FPS, a k-nn graph is con-
structed that connects the center points with their k-nearest neighbours, based on their
3D positions.

Attention-based Refinement Layer: Cluster centers, their neighboring point positions
along with their respective embeddings from the projection networks are passed to the
attention-based refinement layer (AttRef) that modifies the positions of the cluster centers.
This layer can be considered as a rectification step that given a neighborhood and its
corresponding latent features, displaces the cluster center points in order to minimize the
visual perceptual error. Given that the latent embeddings of each point can be considered
as its local descriptor, the refinement layer generates the new positions based on the vertex
displacements along with the neighborhood local descriptors. The final positions of the
points as predicted by AttRef are defined as follows:

p′
!" = p!" + E

9:
;

1
N!"

∑
(∈N%"

C' (:([f ( ‖p ( − p!" ])
<=
>

(5.5)

where E and : are MLPs, N!" the k-nearest neighbors of point p!" (+ = 15 was used), f (
the latent features of point p ( and C' ( the attention coefficients between center p!" and
point p ( . The attention coefficients C' ( are computed using scaled dot-product [198], i.e.
C' ( = softmax

(
/( (f ! )) /' (f" )√

?

)
, where ;C, ;1 are linear transformations mapping features f to

a 5-dimensional space.
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5.3.3 Loss Function

The selection of the loss function to be optimized is crucial for the task of simplification
since a balance is required between the preservation of the object’s structure and its
underlying salient features. A major barrier of most common distance metrics is the
uniform weighting of points that can not reflect the perceptual differences between objects.
As shown in many studies [199, 200, 201] the commonly used Chamfer distance (CD)
between two point sets P1,P2 defined as:

5P1,P2 =
∑

x∈P1

min
y∈P2

‖x − y‖2 +
∑
D∈P2

min
x∈P1

‖x − y‖2 (5.6)

can only describe the overall surface structure similarity between the two sets without
taking into account the high frequency details of each point cloud. Figure 5.1 illustrates
an example of such case. Similarly, the point to surface distance between points of a set
P and a surface M as well as the Hausdorff distance can not preserve salient points of the
object rather than its global appearance. To train the proposed model it is essential to
devise a loss function that preserves both the salient features along with the structure of
the point cloud.

Adaptive Chamfer Distance: As can be easily observed, the first term of Eq. (5.6)
measures the preservation of the overall structure of P1 by P2, in a uniform way. To break
the uniformity of the first term of CD, a weighting factor .= is introduced in equation 5.7
that penalizes the distances between the two sets at the points with high salient features,
ensuring that they will be preserved in the simplified point cloud. The modified adaptive
Chamfer distance is defined as follows:

5E?F8>P1,P2
=

∑
x∈P1

. K̄ (x) min
y∈P2

‖x − y‖2 +
∑

y∈P2

min
=∈P1

‖x − y‖2 (5.7)

where P1 denotes the initial point cloud, P2 the simplified one, and . K̄ (x) a weighting
factor proportional to the mean curvature K̄ at point x1 This weighting factor is only
applied to the first term of equation (5.6) to retain salient points of P1. The second term
of the equation is not weighted to avoid the optimization process from getting trapped at
local minima.

Curvature Preservation: In addition to the adaptive Chamfer distance, the use of a
loss term reinforces the selection of high curvature points from the input. To quantify the

1The weights .= are defined using the sigmoid function applied to the normalized curvatures, divided
by a temperature scalar 4 = 10, in order to amplify high curvature values.
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preservation of salient features of the input, an error is introduced to measure the average
point-wise curvature distance between the two point clouds:

E! =
(

1
|P1 |

∑
=∈P1

‖K̄1(x) − K̄2(NN(x,P2))‖2
)1/2

(5.8)

where NN(x,P2) denotes the nearest neighbour of x in set P2, and K̄ (·) the mean curvature.
This error is referred as Curvature Error (CE).

Overall Objective: A combination of the two aforementioned losses was used as the
total objective to be minimized:

L(P1,P2) = 5E?F8>P1,P2
+ *E! (5.9)

where * is used as a scaling factor set to 0.1. The first term ensures that the selected points
cover the surface of the input, while the latter enforces the selection of high curvature
points.

5.4 Evaluation Criteria

To assess the performance of the simplified models generated by the proposed method
in terms of visual perception, several metrics were defined that measure the similarity
between the two point cloud models.

Roughness Preservation: Roughness describes the deviation of a point from the surface
defined by its neighbours and has been identified as a salient feature in many visual
perception studies [172, 202]. Similar to the curvature preservation loss, the roughness
preservation error was calculated by substituting the curvature values with roughness in
eq (5.8). This error is referred as RE .

Point Cloud Structural Distortion Measure: Additionally to curvature and rough-
ness preservation metrics, the structural similarity score between the two point clouds is
also calculated, which has been shown to highly correlate with human perception [203].
In particular, the point cloud Structural Distortion Measure (SDM) can be defined as:

% (P1,P2) =
CL(p' , p̂') + LC(p' , p̂') + ES(p' , p̂')

C + L + E (5.10)
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L(p' , p̂') =
| |K̄1(p') − K̄2(p̂') | |

max(K̄1(p'), K̄2(p̂'))
(5.11)

C(p' , p̂') =
| |#K̄1 (p') − #K̄2 (p̂') | |
max(K̄1(p'), K̄2(p̂'))

(5.12)

S(p' , p̂') =
| |#K̄1 (p')#K̄2 (p̂') − #K̄12 (p' , p̂')

2 | |
#K̄1 (p')#K̄2 (p̂')

(5.13)

where K1, K2,#K̄1 ,#K̄2 ,#K̄12 (p' , p̂') are the mean, the gaussian-weighted standard devi-
ation and the covariance of the curvatures for point H' in P1 and its corresponding point
p̂' in P2, respectively. The correspondence between the two point clouds is established by
using the 1-nearest neighbor for each point. The global similarity score is obtained using
Minkowski pooling as suggested in [190].

Normals Consistency: Point normals are highly related to visual appearance as indic-
ators of sharp and smooth areas. The consistency of normals’ orientations between the
two models was measured using the cosine similarity loss:

E. =
1

|P1 |
∑

x∈P1
y∈)) (=,P2 )

1 −
nx · ny

‖nx‖‖ny‖
+ 1
|P2 |

∑
y∈P2

x∈)) (D,P1 )

1 −
nx · ny

‖nx‖‖ny‖ (5.14)

where nx denotes the normal at point 8 and "" (x,P2) the nearest neighbour of x in set
P2, calculated as described in Section 5.3.1.

5.5 Experiments

In this section extensive evaluation of the proposed method with both quantitative and
qualitative experiments is reported.

Baselines

The proposed approach was compared against several sampling and simplification methods
including: uniform sampling (random), FPS, PointASNL adaptive sampling method [183],
quadric error metric (QEM) simplification [58], spectral mesh simplification [68], feature
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preserving point cloud simplification [175] along with a top curvature points sampling
(TCP) where the top-k curvature points are selected from the input point cloud. Compar-
ison with recent simplification methods such as [204, 69], which rely on the eigendecom-
position of the Laplacian matrix, was not possible due to their overwhelmingly large
processing run-time and memory consumption (approximately 15 minutes for a mesh with
approximately 15K points).

Datasets

The proposed method was evaluated using several publicly available 3D datasets, with
different characteristics. The simplification benchmark TOSCA [205] dataset comprises
80 synthetic high-resolution meshes with 9 different deformable objects. It is an excellent
candidate to assess feature-preserving simplification, since most of its meshes are non-
smooth consisting of high curvature regions. Additionally, the popular ModelNet10 dataset
[18] was used along with the fixed topology high-resolution MeIn3D face dataset [206]. All
datasets used were randomly split in 80%-20% train-test sets, taking care that none of the
identities/shapes used for training are present in the respective test set.

Evaluation Criteria

The quality of the simplified point clouds is quantitatively evaluated in three ways. Firstly,
low-level structural and perceptual measures are measured, as described in Section 5.4.
Additionally, a pre-trained objective classifier is used to measure the preservation of high-
level semantics, and a user-study is conducted to assess the perceptual similarity between
the input and the simplified models. Furthermore, ablation studies are performed to
evaluate the importance of the essential components of the proposed method. Finally, the
performance of the method was also assessed under noisy conditions and on real-world
scans.

5.5.1 Point Cloud Simplification

In this section, the simplification performance of the proposed method is presented. For
each dataset, both structural (i.e. CD, NC) as well as perceptual metrics (i.e. CE, RE,
SDM) were reported for the proposed and the baseline methods. The figures reported
in Table 5.1 indicate the superiority of the proposed method to maintain the perceptual
features of the input (i.e. low SDM) without sacrificing the overall structure (i.e. low CD)
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Table 5.1: Simplification performance tested on TOSCA (top), ModelNet10 (middle)
and MeIn3d (bottom) datasets for low simplification ratios ("#/"$%& < 0.2) . Best ap-
proaches are highlighted in bold and second best in red. For generalization comparison we
trained the three models “Proposed-MeIn3D”, “Proposed-ModelNet”, “Proposed-TOSCA”
on MeIn3D, ModelNet and TOSCA datasets respectively.

TOSCA
"#/"$%& = 0.2 "#/"$%& =0.1 "#/"$%& =0.05

Method CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4)
Random 1.63 0.312 4.45 6.07 3.35 0.342 4.91 10.7 6.68 0.369 5.71 19.2
TCP 51.3 0.625 4.99 9.52 129.4 0.732 6.42 17.8 172.5 0.793 6.20 32.4
FPS 0.81 0.307 4.71 5.13 1.93 0.341 4.82 9.64 3.94 0.321 5.56 18.3
QEM 1.35 0.291 4.01 5.36 2.64 0.310 4.79 10.4 4.77 0.338 5.53 18.4
Liu et al. [68] 2.17 0.358 4.39 5.39 3.12 0.331 4.96 10.4 5.62 0.441 5.96 18.5
Qi et al. [175] 2.49 0.303 4.45 7.37 3.46 0.353 4.51 13.18 6.15 0.372 5.34 23.18
Yan et al. [183] 1.17 0.301 4.27 5.41 2.54 0.321 4.48 9.51 5.14 0.357 5.27 18.1
Proposed MeIn3D 1.14 0.293 4.15 5.64 2.53 0.313 4.47 8.15 5.36 0.364 5.01 17.7
Proposed ModelNet 1.15 0.310 4.01 5.53 2.51 0.312 4.81 9.72 5.19 0.341 4.99 17.4
Proposed TOSCA 1.12 0.290 3.91 5.01 2.45 0.307 4.41 7.84 4.93 0.333 4.93 16.5

ModelNet
"#/"$%& = 0.2 "#/"$%& =0.1 "#/"$%& =0.05

Method CD (×10−4) NC RE(×10−5) SDM(×10−3) CD(×10−5) NC RE(×10−5) SDM(×10−3) CD(×10−4) NC RE(×10−5) SDM(×10−3)
Random 8.01 0.568 5.91 2.83 20.4 0.655 6.19 4.92 41.02 0.793 6.57 8.19
TCP 197.3 0.898 7.25 3.87 403.1 0.937 7.84 7.11 611.6 0.952 7.01 12.81
FPS 3.12 0.505 6.05 2.74 7.56 0.641 6.39 4.81 16.01 0.744 6.48 8.38
QEM 3.45 0.513 5.94 3.01 9.45 0.625 6.13 5.19 21.43 0.724 6.25 9.12
Liu et al. [68] 4.21 0.537 5.99 3.05 10.32 0.632 6.75 5.32 21.54 0.792 6.52 9.44
Qi et al. [175] 5.64 0.515 6.03 3.47 10.97 0.654 6.54 5.71 26.37 0.745 6.39 9.17
Yan et al. [183] 6.28 0.514 5.87 2.89 11.08 0.643 6.29 5.04 20.69 0.428 6.37 8.61
Proposed-MeIn3D 4.02 0.531 5.93 2.86 29.31 0.610 6.08 4.76 45.12 0.701 6.33 8.02
Proposed-ModelNet 3.32 0.515 5.79 2.68 8.24 0.606 6.06 4.61 17.24 0.696 6.25 7.92
Proposed-TOSCA 4.35 0.523 5.77 2.72 9.42 0.603 5.91 4.64 22.18 0.688 6.04 7.96

MeIn3D
"#/"$%& = 0.2 "#/"$%& =0.1 "#/"$%& =0.05

Method CD (×10−4) NC RE(×10−5) SDM(×10−3) CD(×10−5) NC RE(×10−5) SDM(×10−3) CD(×10−4) NC RE(×10−5) SDM(×10−3)
Random 1.42 0.198 4.15 2.81 3.46 0.313 6.73 5.92 5.52 0.481 7.05 12.4
TCP 158.3 0.801 3.46 3.73 421.1 0.910 6.02 7.38 556.0 0.934 11.87 14.2
FPS 1.12 0.121 3.64 2.96 1.93 0.195 6.29 5.98 3.45 0.484 7.43 11.8
QEM 2.01 0.185 4.53 3.01 2.52 0.198 6.31 5.71 3.65 0.331 8.13 11.3
Liu et al. [68] 2.92 0.215 4.92 3.12 3.14 0.199 6.67 5.92 3.88 0.392 8.46 11.9
Qi et al. [175] 3.12 0.193 4.74 3.45 3.55 0.211 6.51 5.95 4.07 0.405 8.22 12.6
Yan et al. [183] 2.75 0.193 4.70 2.95 3.05 0.205 6.34 5.41 3.76 0.374 9.17 11.4
Proposed-MeIn3D 1.24 0.128 3.15 2.30 2.01 0.192 5.69 4.91 3.25 0.305 6.47 10.6
Proposed-ModelNet 1.75 0.189 3.65 2.45 3.23 0.196 5.73 5.10 4.02 0.369 7.02 10.9
Proposed-TOSCA 1.54 0.168 3.29 2.41 2.32 0.194 5.98 5.06 3.82 0.342 6.49 10.8

of the shape at three indicative simplification ratios. In contrast to TPC method where
the selection of high curvature points leads to an increased Chamfer distance, the proposed
method achieves a fair balance between structure (CD and NC) and saliency (SDM and
RE). Additionally, the proposed method exhibits lower perceptual error (SDM) compared
to FPS and PointASNL [183] methods that sample points directly from the xyz-space.
This may be also observed in Figure 5.3 where sampling from the perceptual latent space
manages to effectively induce the preservation of the input point cloud details.

A significant result, as it can be observed from Table 5.1 and Figure 6.5, is that the
proposed method outperforms recent methods [68, 175, 183] under all metrics, and QEM
in terms of perceptual error. Figure 5.5, demonstrates the superiority of the proposed
method to remarkably retain the salient points of the input when 1% of the input is
retained, in contrast to QEM that performs poorly at coarse areas of high curvature. The
selection of salient points of the input is demonstrated in Figure 5.3, where the proposed
method favours point selection around the chair’s arm, the face’s eyes and nose in contrast
to points at smooth areas, such as the forehead. Intuitively, smooth areas require only
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Figure 5.3: Qualitative comparison between FPS (top row) and the proposed (bottom
row) methods, at different simplification ratios. Differences between the two methods can
be found at coarse and smooth areas, where the proposed model favours the preservation
of high-frequency details of the input point cloud.

a few points to describe their associated planes compared to coarse areas that demand
many points in order to preserve their curvature.

Experiments were conducted in a cross-dataset generalization scenario, where different
datasets were used for training and testing the model. The results of these experiments
are shown in the bottom rows of Table 5.1. As it may be observed, it is of interest and of
high importance that the proposed model can generalize well to out-of-distribution shapes
and topologies indicating that it can be applied directly to any point cloud without fine-
tuning, especially when trained with TOSCA or ModelNet dataset. This might be due to
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Figure 5.4: Curvature preservation error comparison for the TOSCA dataset at different
simplification ratios. Curvature error scales linearly for the proposed method.

the diversity of shapes and topologies as well as the presence of many rough regions at the
training sets of these datasets that enforce the model to favour salient features.

Although lower simplification ratios such as the ones presented in 5.1 are more challenging,
experiments with high simplification ratios were also performed. Table 5.2 includes the
simplification performance of the proposed and the baseline methods on TOSCA, Model-
Net and MeIn3D datasets for simplification ratios above 0.3. Note that the method of [68]
run out of time when attempted to simplify meshes for large simplification ratios (over 0.4).
Importantly, the proposed method outperforms almost all baselines under the perceptual
metrics (NC, RE, SDM) and exhibits comparable CD measures with FPS method.

It is also important to note that the performance of the proposed method degrades linearly
as the simplification ratio increases, compared to baseline methods such as TCP and Qi
et al. [175]. Additionally, the proposed method achieves to be the best or the second best
performing method under all measures.

5.5.2 Ablation Studies

Loss function: As mentioned in Section 5.3.3, an important component of the proposed
simplification framework is the engineering of the curvature guided loss function. In par-
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Figure 5.5: Colorcoded curvature error comparison between QEM and the proposed
method. Blue color corresponds to larger error.
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Table 5.2: Simplification performance tested on TOSCA, ModelNet and MeIn3D datasets
for high simplification ratios. Best approaches highlighted are highlighted in bold and
second best in red. The dataset used for training was referred as “Proposed-Dataset”

TOSCA
"#/"$%& = 0.8 "#/"$%& = 0.5 "#/"$%& = 0.3

Method CD NC RE(×10−4) SDM(×10−3) CD NC RE(×10−4) SDM(×10−3) CD NC RE(×10−4) SDM(×10−3)
Random 0.14 0.093 2.87 2.43 0.49 0.106 3.04 3.03 1.04 0.225 3.65 4.33
TCP 1.11 0.147 2.86 2.61 10.0 0.272 3.36 4.05 30.8 0.357 4.19 6.57
FPS 0.09 0.103 2.85 2.32 0.29 0.245 2.97 2.92 0.67 0.255 3.52 4.22
QEM 0.09 0.103 2.81 2.33 0.29 0.214 2.96 2.91 0.84 0.248 3.54 4.27
Liu et al. [68] - - - - - - - - 1.56 0.384 3.86 4.52
Qi et al. [175] 0.10 0.104 2.87 2.47 0.54 0.209 2.98 3.54 1.71 0.253 3.58 5.32
Yan et al. [183] 0.28 0.103 2.58 2.51 0.42 0.208 2.98 2.90 0.71 0.250 3.57 4.20
Proposed-MeIn3D 0.05 0.104 2.88 2.30 0.25 0.244 3.06 2.87 0.65 0.255 3.54 4.07
Proposed-ModelNet 0.03 0.103 2.87 2.29 0.23 0.211 3.05 2.83 0.64 0.259 3.51 4.08
Proposed-TOSCA 0.03 0.102 2.86 2.21 0.23 0.193 3.03 2.79 0.63 0.254 3.55 4.04

ModelNet
Method CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3)
Random 1.74 0.181 4.91 1.14 3.13 0.201 5.16 1.53 6.01 0.333 5.37 1.99
CP 14.01 0.288 5.01 1.12 55.12 0.371 5.98 1.68 117.11 0.527 6.63 2.71
FPS 0.89 0.195 4.71 1.01 1.93 0.213 4.89 1.35 3.02 0.352 5.57 2.08
QEM 1.35 0.211 4.98 1.14 2.84 0.224 5.12 1.48 3.05 0.382 5.57 2.44
Liu et al. [68] - - - - - - - -
Qi et al. [175] 1.37 0.210 4.97 1.04 3.31 2.31 5.14 1.54 7.04 0.357 5.31 2.17
Yan et al. [183] 2.71 0.209 4.31 1.05 3.37 0.235 5.12 1.43 4.64 0.346 5.28 2.11
Proposed-MeIn3D 2.32 0.353 5.12 1.11 2.81 0.365 5.23 1.50 3.72 0.473 5.53 2.15
Proposed-ModelNet 0.91 0.207 4.61 0.99 1.12 0.216 4.72 1.28 2.74 0.371 5.01 1.87
Proposed TOSCA 2.12 0.270 4.82 1.07 2.98 0.283 4.86 1.42 4.11 0.401 5.26 2.03

MeIn3D
Method CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3) CD(×10−4) NC RE(×10−4) SDM(×10−3)
Random 0.74 0.108 2.46 0.99 1.12 0.120 2.74 1.24 1.26 0.169 3.43 2.31
TCP 12.35 0.211 2.41 0.97 43.06 0.327 2.52 1.54 89.24 0.571 2.89 2.91
FPS 0.59 0.103 2.32 0.86 0.97 0.105 2.53 1.15 1.05 0.108 3.21 2.28
QEM 0.94 0.112 2.52 1.06 1.36 0.139 2.76 1.44 1.94 0.150 3.53 2.54
Liu et al. [68] - - - - - - - - 1.99 0.159 3.91 2.83
Qi et al. [175] 1.22 0.110 2.77 4.14 1.97 0.131 2.77 1.40 2.15 0.144 3.55 2.44
Yan et al. [183] 1.34 0.178 2.45 1.23 1.84 0.129 2.74 1.31 2.07 0.127 3.21 2.19
Proposed MeIn3D 0.61 0.104 2.29 0.90 0.98 0.105 2.46 1.07 1.15 0.105 2.89 1.76
Proposed ModelNet 1.15 0.111 2.41 1.02 1.28 0.123 2.68 1.43 1.59 0.165 2.99 2.09
Proposed TOSCA 1.04 0.106 2.41 1.08 1.21 0.1171 2.63 1.33 1.41 0.149 2.96 1.85

ticular, Chamfer Distance (CD) assigns an equal importance weight to each point set,
neglecting important points of the point cloud. Thus, semantically meaningful points will
be assigned with the same penalty as with points at flat smooth areas. In such way,
CD will drive the model to generate smooth results that minimize shape reconstruction
without taking into account critical identity details of the object. To break this uniformity,
the first term of the CD was modified to assign a different weight to each point according
to its curvature. In Table 6.3, the performance of the proposed method was reported
when trained only with regular CD (Proposed-CD), with adaptive CD (Proposed-ACD),
and with both adaptive CD and curvature preservation loss (Proposed-Full). Results re-
veal that the modified CD exhibits lower perceptual error (CE, RE, SDM) compared to
simple CD, while adding a curvature preserving loss (Proposed-Full) further boosts the
performance of the model.

Model architecture: Additionally, the importance of the GNN-based point projector
and the attention refinement network in the proposed architecture were examined. As
shown in Table 6.3, a performance similar to the FPS method is observed when the
proposed method is trained without the GNN module (Proposed w/o GNN), with a signi-
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ficant increase in perceptual error measures (RE, SDM). This certifies the importance of
the GNN-based point projector that, in contrast to linear layers, enables message passing
through neighboring points. Finally, an increase in SMD error is also observed to the
model trained without the attention refinement module. As expected the use of attention
refinement module further improves perceptual preservation since it weights points within
the same cluster and moves the cluster centers closer to salient regions to minimize the
curvature error.

Table 5.3: Ablation study on loss function and model architecture. Proposed-CD denotes
the model trained with CD, Proposed-ACD denotes model trained with adaptive CD and
Proposed-Full denotes the model trained with the loss functions introduced in Section 3.3.
Proposed-w/o GNN refers to the model trained without the GNN layer in point projector
module and Proposed-w/o AttRef refers to the model trained without the attention re-
finement module.

"#/"$%& = 0.2 "#/"$%& =0.1 "#/"$%& =0.05
Method CD CE RE(×10−4) SDM(×10−4) CD CE RE(×10−4) SDM(×10−4) CD CE RE(×10−4) SDM(×10−4)
Proposed-CD 1.12 0.40 3.96 5.52 2.41 0.47 4.43 9.64 4.91 0.58 4.99 18.3
Proposed-ACD 1.15 0.39 4.01 5.51 2.54 0.46 4.42 9.61 4.97 0.56 4.96 17.9
Proposed-w/o GNN 0.86 0.32 4.67 5.11 2.15 0.35 4.76 9.12 4.15 0.36 5.32 18.1
Proposed-w/o AttRef 0.95 0.31 4.21 5.05 2.29 0.31 4.52 8.54 4.51 0.34 5.16 17.3
Proposed-Full 1.12 0.29 3.91 5.01 2.45 0.30 4.41 7.84 4.93 0.33 4.93 16.5

5.5.3 Mesh Simplification

As described in Chapter 2, mesh simplification is a long studied problem that has been
tackled only by greedy algorithms. In this section, an alternative method is introduced
and proposed to overcome the greedy nature of simplification. This alternative method
leverages the simplification technique introduced in Section 5.3. The proposed method,
without the need of any particular modification, can be easily extended for the task of mesh
simplification when combined with a triangulation algorithm to transform the simplified
vertices into a mesh structure. The process unfolds in two steps. Initially, mesh vertices
are simplified by treating them as a point cloud but, instead of using a k-nn, the mesh
adjacency matrix is utilized in order to determine point connectivity. In a second step,
the remaining vertices are re-triangulated using an off-the-self triangulation algorithm
such as Ball Pivoting [207]. Other triangulation algorithms, such as Delaunay, alpha
shapes or Voronoi diagrams, could be also used but Ball Pivoting algorithm was selected
as it produces better results for small point clouds. Figure 5.6 shows visual results for
the extension of the proposed simplification method to triangular meshes (for various
simplification ratios).
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Figure 5.6: Simplified meshes using the proposed method followed by Ball Pivoting Al-
gorithm.

5.5.4 User-Study

To quantify the ability of the proposed method to select points that correlate with human
perception a user study was performed, using the paired comparison protocol contrasting
the proposed and one baseline method, similar to [140]. In total, 50 participants were
specifically asked to evaluate 18 point clouds from different datasets (MeIn3D, ModelNet,
TOSCA) and select one of the two simplified point clouds that mostly preserves the per-
ceptual details of the reference one in terms of the overall shape and identity similarity.
In average, as shown in Table 5.4, users selected 14 out of the 18 point clouds produced
by the proposed method, as the ones preserving most of the visual features.

Table 5.4: User studies results of different methods. Average user preference scores are
reported(higher is better, results in %). Best results in bold.

Method User choice
Proposed vs QEM 73%/27%
Proposed vs Liu et al. [68] 78%/22%
Proposed vs FPS 71%/29%
Average 74%/26%
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5.5.5 Computational Time

Inevitably, in addition to salient point preservation, a proper point cloud simplification
method should confront real-time executions. Although time complexity is beyond the
scope of this study, the time required for simplifying 80 high-resolution meshes from the
TOSCA dataset was assessed . Since FPS, Uniform and TCP baseline methods do not
require any significant computations, the proposed method was compared with the popular
QEM approach using a highly optimized version from the MeshLab framework [208] and
the official implementations of [175] and [68]. It is important to note that the code of the
proposed method could be further optimized, using parallel programming. In particular,
80% of the computational time of the proposed method is acquired by k-NN search that
could be further optimized whereas FPS takes 17 % and the rest 3% of the runtime is spent
on the learnable modules. Figure 5.7 demonstrates that the required mean runtime of the
proposed method decreases drastically across all experiments, as the desired simplification
increases, requiring just a few seconds to simplify the input to 1% of its original size. In
contrast, the methods of [175] and [68] require approximately a minute to simplify a single
mesh which makes them impractical.

Figure 5.7: Average time of simplification for the proposed and the baseline methods.

87



5.5.6 Classification of simplified point clouds

To further assess the simplification quality of the simplified point clouds, a pretrained
shape classification model was utilized, and its classification accuracy on the simplified
point clouds was measured. This approach allowed for the evaluation of the preservation
of high-level semantics using an external objective judge, such as a neural network. Spe-
cifically, a PointNet [20] model was trained on the train split of the TOSCA dataset. The
proposed method and the baseline methods were used to simplify the remaining test split.
Figure 5.8 presents the classification performance, in terms of accuracy, of the compared
methods at different simplification ratios. It is important to note that the scope of this
experiment is to demonstrate that the simplified point clouds produced by the proposed
method can be better identified, by a pretrained classifier, compared to the ones produced
by the baselines. Results of the original test set performance were reported at simpli-
fication ratio equal to 1. It can be easily observed that the proposed model degrades
with a smaller slope at extreme simplification ratios, compared to the baseline models.
This strengthen the argument that the proposed method retains the salient features that
characterise each object and indicate its identity. Arguably, the performance drop of the
baseline models could be attributed to the uniform way of sampling points that may drive
to decimation of salient points that characterize the point cloud. In contrast, perceptual
preservation guided the perceptually guided simplification of the proposed method selects
points according to their visual importance, aiming to secure that the salient features will
be decimated last.

5.5.7 Simplification under noise conditions

To both quantitatively and qualitatively evaluate the performance of the proposed method
in the presence of noise the pretrained model was fed with point clouds distorted with
Gaussian noise (# = 1). Quantitative experimental result are summarized in Table
5.5, with the proposed method to exhibit the best performance for almost all metrics
(NC,RE,SDM) across all simplification ratios, and even the best second for structure pre-
servation (CD). Such findings reveal the anti-noising capabilities of latent space sampling
that, compared to xyz-space sampling, is less affected by the outlier noisy points. As can
be observed by inspecting Figure 6.9, the proposed method preserves most of the struc-
tural characteristics of the input, without being affected from the outlier noisy points as
much as the baseline methods. In contrast, sampling points directly from the xyz-space
using the FPS method produces noisy outputs following the noisy patterns of the inputs.
Similarly, QEM selects noisy points in order to minimize the quadric error of the input
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Figure 5.8: Classification accuracy of the pretrained PointNet++ on simplified point
clouds at different ratios.

planes, such as the outliers in cat’s foot and human hand (shown in zoomed areas).

�
�
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�
�

Figure 5.9: Qualitative comparison between the baseline and the proposed methods for
point clouds with Gaussian noise addition.
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Table 5.5: Simplification performance tested on TOSCA dataset with addition of Gaus-
sian noise. Best approaches are highlighted in bold and second best in red. “Proposed
w/o noise” is reported for reference.

"#/"$%& = 0.2 "#/"$%& = 0.1 "#/"$%& = 0.05
Method CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4) CD NC RE(×10−4) SDM(×10−4)
Random 2.71 0.37 6.56 9.20 4.43 0.38 6.74 14.39 7.78 0.39 6.85 23.63
TCP 24.7 0.48 6.30 9.27 37.2 0.49 6.58 14.83 53.5 0.51 6.77 23.45
FPS 2.74 0.34 6.25 9.89 4.28 0.36 6.34 15.86 6.83 0.39 6.81 25.03
QEM 1.92 0.31 6.61 9.14 2.57 0.36 6.81 14.53 3.85 0.37 6.93 23.12
Liu et al. [68] 3.04 0.35 7.14 9.48 3.99 0.39 7.36 16.21 6.74 0.412 7.61 26.35
Qi et al. [175] 3.21 0.33 7.22 11.14 4.31 0.35 7.54 18.34 7.13 0.39 7.81 27.52
Yan et al. [183] 2.95 0.35 6.54 10.04 4.30 0.39 7.30 16.01 7.11 0.41 7.12 25.14
Proposed 2.50 0.33 6.13 8.81 3.96 0.35 6.24 14.42 6.46 0.37 6.34 22.31
Proposed w/o noise 1.12 0.29 3.91 5.01 2.21 0.31 4.41 7.84 4.93 0.33 4.93 16.54

5.5.8 Simplification of Real-World Point Clouds

A significant application of point cloud simplification methods is to sub-sample points of
real-world scanners that generate million of points from the representative surface. To
test the performance of the proposed method on such scenario, the Torronto3D dataset
[209] was utilized, which contains outdoor point clouds acquired with LIDAR sensors.
Again, the pretrained model on TOSCA dataset was used, without further training or
tuning. Quantitative results summarized in Table 5.6 demonstrate that the proposed
method outperforms baseline methods in perceptual quality measures (CE, RE, SDM).

Table 5.6: Simplification performance tested on outdoor point cloud from Torronto3D
dataset. Best approaches highlighted are highlighted in bold. The proposed method
model is trained with TOSCA dataset.

Torronto3D
"#/"$%& = 0.2 "#/"$%& = 0.1 "#/"$%& = 0.05

Method CD NC CE(×10−2) RE(×10−4) SDM(×10−4) CD NC CE(×10−2) RE(×10−4) SDM(×10−4) CD NC CE(×10−2) RE(×10−4) SDM(×10−4)
Random 0.31 0.577 8.15 11.27 0.47 0.62 0.634 8.89 11.56 0.48 1.27 0.679 9.15 11.91 0.48
TCP 5.90 0.894 15.64 14.47 0.58 7.40 0.912 12.41 12.95 0.53 9.58 0.912 13.02 12.61 0.53
FPS 0.17 0.509 6.42 11.22 0.46 0.34 0.565 7.01 11.32 0.46 0.70 0.619 7.51 11.37 0.47
Proposed 0.18 0.512 5.67 11.02 0.34 0.37 0.595 6.35 11.10 0.38 0.75 0.644 6.88 11.15 0.41

Although FPS achieves the lower CD and NC errors and produces smooth results that
minimize the overall shape loss, it fails to preserve essential details of the object. Figure
5.10 shows examples of the simplified lidar point clouds at different simplification ratios
generated by the proposed method.

5.6 Implementation Details

The projector network was implemented using three multi-layer perceptrons (MLP) fol-
lowed by Batch Normalization [210] and ReLU activation functions [166]. The filter sizes
were set to 64. The GNN following the stacked MLPs was also ReLU activated with a
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Figure 5.10: Simplification of real-world scans using the proposed method. Figure better
viewed in zoom.

filter size of 64. A relatively small neighborhood size of +=7 nearest neighbors was used
as the input graph connectivity, following [26, 24]. The initial point of FPS was randomly
selected, as it did not show any influence on the performance. For each cluster center
selected by FPS, 15 neighbors were selected, as suggested in the literature. The filter size
of the attention-based refinement layer was set to 3, mapping the (64+3) features of the
selected points to (8, I, J) coordinates. The proposed model was trained for 150 epochs
with a learning rate of 0.001 and a weight decay of 0.99 on every epoch using the Adam
optimizer [167].

5.7 Conclusion

The work in this Chapter emphasizes the proposal of a learnable, neural-based simplifica-
tion approach to overcome the inefficiencies of traditional greedy simplification methods.
A learnable point cloud simplification method is presented that aims to preserve salient
features while retaining the global structural appearance of the input 3D object. Using
three learnable modules, large-scale point clouds can be simplified in real-time, address-
ing the limitations in the literature regarding computational complexity. In an extensive
series of both quantitative and qualitative experiments, the proposed method not only
outperforms its counterparts under most perceptual criteria but also exhibits zero-shot
capabilities. In the next Chapter, we will attempt to adapt the proposed method to mesh
structures using a more sophisticated triangulation process. Instead of relying on off-the-
shelf triangulation algorithms on top of the point cloud simplification model, the aim is
to extend the proposed method to predict the triangulation of the simplified model by
utilizing the priors of the input mesh.
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CHAPTER 6

3D MESH SIMPLIFICATION
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D espite the advent in rendering, editing and preprocessing methods of 3D meshes,
their real-time execution remains still infeasible for large-scale meshes. To ease
and accelerate such processes, mesh simplification methods have been introduced

with the aim to reduce the mesh resolution while preserving its appearance. In this
Chapter, the novel task of learnable and differentiable mesh simplification is tackled.
Compared to traditional simplification approaches that employ a greedy iterative pro-
cess of collapsing edges, a fast and scalable method is proposed that simplifies a given
mesh in one-pass. The proposed method unfolds in three steps. Initially, a subset of
the input vertices is sampled using a sophisticated extension of random sampling. Then,
a sparse attention network is trained to propose candidate triangles based on the edge
connectivity of the sampled vertices. Finally, a classification network estimates the prob-
ability of a candidate triangle to be included in the final mesh. The fast, lightweight,
and differentiable properties of the proposed method make it possible to be plugged into
any learnable pipeline without introducing a significant overhead. The sampled vertices
and the generated triangles are evaluated under several appearance error measures, and
their performance is compared against several state-of-the-art baselines. Furthermore,
it is showcased that the running performance can be up to 10× faster than traditional
methods.
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Figure 6.1: The proposed fast and learnable method for mesh simplification that generates sim-
plified meshes in real-time.

6.1 Introduction

Triangle meshes remain the most popular 3D structure to represent a surface. The ad-
vent of 3D scanning devices have made feasible to collect highly detailed 3D meshes that
typically hold thousand of faces. However, extreme details lead to enormous memory re-
quirements that limit their usage. A wide range of applications including rendering and
editing along with their mobile implementations, require lightweight meshes in order to
achieve real-time processing. Additionally, many monocular 3D reconstruction methods
that utilize analysis-by-synthesis are required to be computational efficient and differ-
entiable in terms of their topologies. Such types of iterative optimization methods can
drastically benefit from an differentiable on-the-fly simplification technique that reduce
their computational footprint.

Mesh simplification is a long studied problem, with an immense amount of methods de-
veloped to sustainably reduce the size of the original mesh without extremely distorting
its appearance. Traditional simplification techniques decimate the input mesh in a greedy-
fashion by prioritizing vertices and edges according to a cost function [53, 58]. However,
in large-scale objects scenario, simplifying over 90% of the original mesh size requires it-
erating through thousands of vertices resulting in an inevitable computational burden. In
addition to their computational footprint, traditional simplification techniques are non-
differentiable and thus can not be used directly in end-to-end training processes that op-
timize the mesh surface. To alleviate the aforementioned limitations, a learnable strategy
for mesh simplification was proposed that reduces both time and computational require-
ments and provides a plug-and-play method, ready to be adapted in any differentiable
framework.

A major barrier that limits learnable simplification methods is the discrete nature of the
mesh connectivity, i.e. edges and triangles. Although mesh simplification can be achieved
in a two-step process using a learnable sampling method followed by an off-the-shelf tri-
angulation algorithm(e.g. Delaunay or Ball Pivoting) as show in Chapter 5, such setting,

94



apart from being time consuming, limits the direct optimization of the mesh surface. In
particular, in the previous Chapter 5, a learnable point cloud simplification technique was
proposed, that is able to preserve the curvature features of the input point clouds. This
method can be also extended to mesh simplification task by utilizing off-the-self algorithms
to triangulate the resulting simplified point cloud. Nevertheless, such methodology re-
quires careful selection of the triangulation parameters for every sample. Importantly, the
original topology of the mesh is neglected, i.e. the mesh connectivity might be totally
different, and cannot be directly optimized in a learnable process. Recently, several ap-
proaches have been proposed to solve the non-trival task of differential triangulation using
soft relaxations of the discrete setting. However, most of them are considered impractical
since they are applied to volumetric representations [211], demand iterative optimizations
for the triangulation of each mesh [212] or require 2D parametrizations [213, 214]. The aim
of this work is to devise a simple but intuitive differentiable process to directly triangulate
the 3D points in one-pass. To do so, the triangulation process was modeled by generat-
ing a distribution over possible edges and triangles and select the ones that preserve the
appearance of the original mesh.

In this Chapter, the first learnable mesh simplification method is proposed, that generates
both points and triangulation of the simplified mesh. In contrast to previous Chapter 5,
a soft relaxation of the discrete triangulation setting is proposed by learning the mesh
connectivity distribution in an unsupervised manner. The proposed method can simplify
meshes of any scale in real-time by using an extremely efficient point sampling method and
a lightweight triangle classifier. To follow the initial mesh appearance, the distribution
of the edges was constrained to the priors defined by the original mesh connectivity.
The proposed method is fully-differentiable and can be adapted to any training procedure
without a significant computational footprint. Finally, the proposed method can generalize
to out-of-distribution samples exhibiting zero-shot capabilities.

The main contributions of this Chapter are summarized as:

• The first learnable mesh simplification framework is proposed that is trained to both
select vertices and generate the underlining triangulation of the surface.

• The proposed model is fully differentiable and can be directly adapted to any learn-
able framework.

• An efficient point selection method is introduced that extends the naive random
sampling [215] to a trainable module that samples vertices from the underlying
multinomial distribution.

95



• Finally, a simple but intuitive triangulation strategy is proposed, which can be ad-
apted to point cloud meshing.

6.2 Related Work

Learnable Triangulation

Albeit surface reconstruction method have been extensively studied over the years, less
attention has been devoted to learnable and differentiable triangulation methods. Most
of the existing techniques in the literature generate mesh surfaces by estimating implicit
funtions [216, 217], calculating voxel grids and occupancy fields [218, 219] or deforming a
template mesh [201]. Less progress has been established to the challenging task of direct
point set triangulation, mainly due to the discrete nature of the edges that compose the
mesh connectivity. PointTriNet [212] utilizes two models to suggest and classify triangles
in local patches, enforcing the selection of watertight and manifold triangles using ad-hoc
losses. A similar principle is also used in [220] where the candidate triangles are iteratively
filtered using the estimated ratio of the geodesic versus the euclidean distance. Recently,
there has been an exertion to employ traditional Delaunay surface triangulation into the
learnable triangulation process. In [213], the authors propose to learn a parametrization
that maps the input point patches to two-dimensional spaces and triangulate them using
Delaunay technique. In a similar manner, a soft relaxation of weighted Delaunay trian-
gulation was also proposed [214] that enables gradient flow, using an inclusion score to
discard proposed triangles from the final mesh. Similarly to [213], the input point cloud
is triangulated to a spectral partitioned 2D subspace produced using Least-Squares Con-
formal Map parametrization. In this Chapter a modular architecture is proposed that
directly learns to generate a triangulated version of the input vertex set without adhering
to any kind of 2D projection and mapping.

6.3 Method

The architecture of the proposed model is composed by mainly three components: the
Point Sampler, the Edge Predictor and the Face Classifier.

All modules are fully differentiable and are trained in an end-to-end fashion. Figure 6.2
illustrates an overview of the proposed method.
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Figure 6.2: Overview of the proposed model (bottom block). Initially, Point Sampler
module (top left) samples a subset of the input vertices from the generated multinomial
distribution. To avoid isolated nodes, a k-NN graph is constructed to extend the already
existing edges of the graph. Following that, a sparse attention layer weights the con-
nectivity between nearby vertices and generates a set of candidate triangles (top middle).
Finally, Face Classifier module defines a graph over the proposed faces and assigns a
probability to each triangle based on their relative features (top right).

6.3.1 Point Sampler

The first module of the proposed model is a network that samples the vertex set in a
way that the mesh structure will remain intact. Previous works, utilized Farthest Point
Sampling (FPS) to sample input point sets since it has been shown that it accurately
preserves the underlying shape of the object [22]. However, the iterative nature of FPS is
not scalable making it impractical for large scale point sets. In contrast, as shown in [215],
random sampling is extremely fast, size agnostic, holding an O(1) complexity opposed
to the FPS’s quadratic O("2) complexity. Based on these observations, an extension to
random sampling is proposed that utilizes a sophisticated learnable module that breaks
the uniform hypothesis of random sampling and samples nodes under the assumption of
a multinomial distribution. To do so, the Point Sample module was trained to assign an
inclusion score to each point in the vertex set which enables fast sampling.

Given that the simplified point set should approximate the structure of the input point
set, the Point Sampler module needs to be trained to select points that provide the best
coverage of the input space. Taking into account that nearby points will also have similar
latent descriptors, a graph neural network (GNN) approach was used, that will intuitively
provide shape insights for the vertices. An update rule based on the relative vertex coordin-
ates was employed that can approximate the deviation of a point from its neighborhood
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as:
f' = #

(
WG max

(∈N(x" )
W/ (x' − x ()

)
(6.1)

where N(x') denotes the neighbouring points of x', WG,W/ are learnable parameters and
#(·) a non-linearity. This GNN layer will be referred as DevConv.

With such formulation, the advantage is two-fold. Primarily, the point descriptors may
better describe the topological characteristics of a given point, where points in sharp and
rough regions will receive larger values compared to smooth areas. Secondly, the sampling
module gains robustness to noise, since the combination of the 608,6?6 as aggregation
function and the relative coordinates provides to the network the ability to easily identify
outliers.

6.3.2 Edge Predictor

Following the Point Sampler, the Edge Predictor module is responsible to predict the con-
nectivity between the sampled points. To do so, an initial extension of the original mesh
connectivity is performed by inserting edges defined by a +-nn graph over the sampled
points to avoid isolated nodes in the final mesh. The extended graph GA=> is then pro-
cessed by a DevConv layer followed by a sparse self-attention layer [11] that predicts the
probability that the point x' is connected with the point x ( . Such probability is formulated
as:

S[,, -] =
exp

( (
WCf (

)+ (W1f')
)

∑
1∈N(x" )

exp
( (

WCf (
)+ (W1f1)

) (6.2)

where WC,W1 are learnable parameters and f', f ( are the features of points x' , x ( .

To avoid having edges of equal probability between nearby points, DevConv was utilized
to enable feature dissimilarity between them. Finally, the estimated adjacency matrix is
defined using the product of the estimated probabilities and the original adjacency matrix,
following the formulation of [46], as:

Ŝ = S[:, idx] ∈ R)×H (6.3)

A# = Ŝ+ · A · Ŝ, A# ∈ RH×H (6.4)

where idx refers to the vertices selected by the point sampler.

The motivation behind the use of the product between the estimated and the original
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connectivity is to enforce the edges of the simplified mesh to respect the original topo-
logy. Note that all of the aforementioned multiplication operations are between the sparse
matrices and can be calculated very efficiently.

The set of candidate faces can be easily constructed from the non-zero entities of the
simplified adjacency matrix As. In particular, if A# [,, -],A# [,, +],A# [ - , +] have all non zero
values, a candidate triangle 1 = (,, - , -) is constructed. The initial inclusion probability
H'.'>> is assigned to triangle 1 is defined as:

H'.'>> =
1
3 (A# [,, -] + A# [,, +] + A# [ - , +]), ,, - , + ∈ 1 (6.5)

, where ,, - , + are the vertices of triangle 1.

This initial face inclusion probability can be thought as a prior that will be invoked by
the Face Classifier to produce the final (posterior) probability of the edge.

6.3.3 Face Classifier

The face classifier is responsible to assign to each triangle an inclusion score H> that
captures the probability of a triangle to be present in the simplified mesh. To estimate
this probability, a +-nn graph G>%' is initially constructed, which connects each candidate
triangle with its +-neighbours based on their barycenter distances. Then a GNN module,
namely TriConv, that acts on G>%' embeds faces to the latent space. To better capture
the interactions of two triangles ! and 6 in space, a relative position encoding r.,, was
utilized which can be defined as:

r.,, = [(t,'.. −t,'., ) | | (t,F=. − t,F=, ) | | (b. − b,)],
t,F=. = 608(e.' ( , e.'1 , e.(1)

(6.6)

where t,F=. , t,'.. ∈ R3, e.' ( the edge vectors x' − x ( for triangle !; Z., Z, the barycenters of
triangles !,6 and | | the concatenation operation. Finally, the update rule of TriConv can
be defined as follows:

f (7). =
∑

1∈N(>* )
Y$[([r.,1 | | (f (7−1)

. − f (7−1)
1 )]) (6.7)

where N(1.) the neighborhood and f (7−1)
. the previous feature of face !. In order to
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generate the final inclusion probability H> three TriConv layers were stacked, toped with
a softmax activation function. The prior probability H'.'>> was used as the initial feature
of each triangle.

6.3.4 Losses

To train the proposed framework a set of loss functions was used in order to that oblige
the simplified meshes to preserve the visual appearance of the originals. The basic idea
underlying the utilized losses is to enforce the selection of salient points that are repres-
entative of the mesh structure and to penalize badly formed triangles.

Probabilistic Chamfer Distance: To improve uniform sampling, the Point Selector
is designed to assign high probabilities to the points that cover the surface of the point
cloud. This is achieved by sampling a sufficient number of points from the input mesh
surface S and measuring the distance between the points sampled from the Point Sampler
and the points sampled from the input surface. Mathematically, this is formulated using
a modified probabilistic Chamfer distance:

5 P̂,P+
=

∑
y∈P+

H(y) min
x∈ P̂

‖x − y‖2 +
∑
x∈ P̂

H(y) min
y∈P+

‖x − y‖2 (6.8)

where P̂ denotes the points sampled from the input surface S, P# the sampled points and
H(y) their respective probabilities. Given that this loss is differentiable only with respect
to the probabilities of the sample points it is only applied to the Point Sampler module.
This means that one can pre-train the Point Sampler and adapt it to any learnable frame-
work.

Probabilistic Surfaces Distance: To avoid having triangles in regions that are not ex-
isting in the original mesh and penalize the presence of surface holes, a Chamfer-inspired
loss was designed, which measures the distance between the ground truth and the probab-
ilistic surface. In this setting, the forward term of the distance, i.e. the distance between
the generated surface S# and the original, enforces triangles to fit the ground truth surface
S. This term can be modeled by using the barycenters of the two surfaces as follows:

5 -S,S+
=

∑
b̂∈S+

Hb̂ min
b∈P

‖b̂ − b‖2 (6.9)

where b stands for the barycenters of the ground truth surface triangles, b̂ the barycenters
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of the generated triangles. Each barycenter holds a probability Hb̂ that it is equal to
its corresponding triangle 1̂ probability Ht̂. In this manner, barycenters of triangles in
non existing regions, e.g. a triangle connecting the dogs legs, will have greater distance
compared to barycenters of triangles in existing regions of the ground truth surface.

In contrary to the forward term, the reverse term of the distance function aims to pen-
alize areas with small probabilities, i.e. areas that when discarded may result into the
introduction of surface holes. Mathematically this can be defined as follows:

5%S,S+
=

∑
D∈S+

Hy min
x∈P

‖x − y‖2 +
(
1 − Hy

) 1
+

∑
1

H>' ‖x>' − y‖2 (6.10)

where x denotes a point from the ground truth surface S and y a point from the generated
surface S# with probability Hy. The second term of equation (6.10) estimates the average
distance between point y and its +-nearest triangles 11 in the generated surface S# apart
from the one that point y belongs to. This last term can be intuitively conceptualized
as the error introduced when the triangle in which y belongs is not present in the gener-
ated triangulation. To make the reverse term robust, a sufficient amount of points were
sampled from each generated triangle.

Triangle Collision: To avoid having triangles that penetrate each other, a loss term was
introduced that directly penalizes the probabilities of such triangles. The collision of a
triangle is measured in terms of line segments (i.e. edges of nearby triangles) penetrating its
surface. In particular, the planes defined by each face are computed, and nearby triangles
formed from edges that penetrate these planes are penalized. The penalty applied to
such irregular triangle is proportional to the number of planes that it penetrates and it is
defined as:

L! =
1

|F# |
∑
>∈F+

H>6! (1) (6.11)

where H> denotes the probability of triangle 1, 6! (1) the number of faces penetrated by
triangle 1 and F# the set of generated triangles.

Although triangle collision loss may be sufficient to penalize triangles that penetrate the
surface of their neighboring triangles, it can not capture and penalize overlapping triangles
with parallel planes. To address this limitation, two additional losses were introduced that
penalize such triangles, namely the edge crossings loss LA and the overlap loss L$.
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Edge Crossings: Edge crossings, in terms of line segments (edges), of nearby triangles are
calculated, and triangles that carry an edge crossing another edge are directly penalized.
The edge crossings loss between two triangles was calculated by splitting each triangle
into the three lines that define their edges. The points of intersection between all nine
possible edge-line combinations of two neighboring triangles are then calculated. The
points of intersection are validated to belong inside the line segments (i.e., edges) of the
query triangle. The frequency at which a triangle penetrates the edges of its neighboring
triangle is measured, and it is penalized using the formula below:

LA =
1

|F# |
∑
>∈F+

H>6A (1) (6.12)

where H> denotes the probability of triangle 1, 6A (1) the number of edges that triangle 1
crosses and F# the set of generated triangles. Similar to collision loss, the penalty applied
to each triangle is proportional to the number of faces that it penetrates.

Overlapping Triangles: Finally, to avoid overlapping triangles in space, a sufficient
number of points were sampled from each generated face and compute an estimate that
belongs to a given face. This can be efficiently implemented by measuring the sum of the
areas produced by the sampled point and the vertices of each of the +-nearest triangles. In
particular, 100 points were sampled from each triangle and calculate their distances from
the 50-nearest triangles. The aim is to enforce the sampled point to belong to only one tri-
angle.
To identify if a point belongs to a given triangle, the three areas
\1, \2, \3 produced by substituting each triangle’s vertex with the
query point were calculated and if the sum of the three produced areas
equals the area of the triangle was crosschecked. Additional provision
was applied for triangles that share parallel planes by slightly increas-
ing the distance tolerance to the axis that is vertical to the triangle’s
plane. Finally, a penalty was applied to all triangles that share a
sampled point. Similar to the Edge Crossing loss, the penalty applied
to the triangle is proportional to the number of triangles that overlaps:

L$ =
1

|F# |
∑
>∈F+

H>6$ (1) (6.13)

where H> denotes the probability of triangle 1, 6$ (1) the number of triangles that triangle
1 overlaps.
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Overall Objective Finally, the overall loss to be minimized is formed as:

L = 5P1,P2 + 5
-
S1,S2

+ 5%S1,S2
+ *!L! + *ALA + *$L$ (6.14)

where *!, *A, *$ are hyperparameters that scale the loss functions.

6.4 Implementation Details

Point Sampler: The Point Sampler is constructed using three stacked DevConv layers,
followed by a ReLU activation. A hidden dimension of 64 is selected to ensure a lightweight
and fast model. Deeper architectures and larger latent spaces were experimented with, but
no significant increase in performance was observed compared to the trade-off in run-time.

Edge Predictor: The nodes are passed to the edge predictor after extending the original
adjacency matrix by adding links between the nodes sampled by the Point Sampler. This
is done by constructing a +-nn graph for the sampled node set, with + = 15. The extended
graph is then passed through a DevConv layer with 64 hidden dimensions. DevConv is
utilized to allow the model to assign sparse attention weights. The use of Linear or vanilla-
gnn layers would result in high attention scores for points with similar features, which may
not always be useful. DevConv enables larger variations between point features, leading
to more sparse attention weights.

Face Classifier: Three stacked TriConv layers were utilized, followed with ReLU activa-
tion to encode triangle to the latent space, formed by its +-nearest neighbors. The number
of the triangle neighbors was set to +=20, selected by their respective distances to their
barycenters. The triangle features are encoded to an 128-dimensional embedding space
with additional 9 features from the triangles relative coordinates. The first TriConv layer
takes as input the initial triangle probability predicted by the edge predictor. The final
TriConv layer is topped with a softmax layer to constrain the triangle probabilities to the
(0, 1) interval.

Training: The model was trained for 150 epochs with learning rate of 1/ − 5 and a
weight decay of 0.99 on every epoch using the Adam optimizer [167]. The generated
simplified meshes are produced by selecting only the faces with a probability above 0.5.
The generated meshes were further constrained to be manifold by selecting for each edge
the two incident to it faces with the highest probability.
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6.5 Experiments

In this section, the simplified meshes produced by the proposed framework are evaluated.
The effect of the Point Sampler is initially examined, followed by an assessment of the
quality of the produced triangulation and the respective run times.

Dataset: To train the proposed method, the benchmark TOSCA dataset [205] was util-
ized, consisting of 80 high-resolution meshes. The same train-test split as in [10] was used,
testing the model on topologies not present in the training set. This allows the devised
model to be directly applied to out-of-distribution meshes and generalize across different
topologies.

Baselines: Several baselines were selected for comparison, each with different properties.
The popular quadric mesh simplification (QEM) [58] was chosen as a baseline, known
for its efficiency and popularity in mesh simplification. Additionally, two learnable and
differentiable triangulation methods, PointTriNet [212] and DSE [214], were selected to
triangulate point clouds sampled with FPS, providing an alternative for differentiable mesh
simplification. Lastly, the proposed method was compared against a recently introduced
learnable point cloud simplification method [10], which utilizes the Ball-Pivoting algorithm
to triangulate the simplified point clouds.

6.5.1 Evaluation of the Simplified Meshes

To evaluate the triangulation performance, the percentage of non-watertight edges (WA)
was measured, which represents the edges with one, three, or more incident faces. This
metric is more suitable for assessing the quality of triangulation when holes are present,
as the edges surrounding a hole are still manifold (a watertight edge is manifold, but a
manifold edge is not guaranteed to be watertight).

Additionally, to evaluate the simplification performance of each method, 50= points were
sampled from the surface of each simplified mesh, and the Chamfer distance (CD) and
normals error (NE) were measured compared to their corresponding points in the original
mesh. The normals error captures the visual appearance of the simplified models, utilizing
a normal error that measures the cosine similarity between the normals of the two models.
The normals dissimilarity is evaluated using two terms: the forward error (from source to
target) and the reverse error (from target to source). For the forward term, the normal
differences between each face of the simplified model and its nearest face in the original
mesh are measured. The reverse term estimates the closest face of the simplified mesh for
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Table 6.1: Quantitative comparison of the proposed and the baseline methods under
several simplification ratios. Best approaches are highlighted in bold and second best in
blue. Time is measured in seconds.

"#/"$%& = 0.05 "#/"$%& = 0.1 "#/"$%& = 0.2 "#/"$%& = 0.5
Method CD WA LE NE Time CD WA LE NE Time CD WA LE NE Time CD WA LE NE Time
PointTriNet [212] 1.06 12.14 0.98 0.20 107.2 0.47 11.64 0.52 0.17 238.1 0.21 11.48 0.27 0.13 581.9 0.08 14.92 0.12 0.08 1333.3
QEM [58] 0.45 0.00 0.94 0.14 45.6 0.22 0.00 0.53 0.10 31.1 0.11 0.00 0.27 0.07 28.4 0.05 0.00 0.13 0.03 25.6
DSE [214] 1.39 6.64 0.95 0.23 271.8 0.51 4.38 0.50 0.19 490.7 0.24 3.12 0.26 0.15 941.0 0.07 2.39 0.12 0.08 2245.2
Potamias el al. [10] 10.47 8.53 1.23 0.21 105.2 0.83 8.39 0.76 0.17 149.3 0.49 4.72 0.43 0.14 158.7 0.20 4.67 0.22 0.10 183.7
Proposed 1.02 2.17 0.90 0.19 4.1 0.42 2.21 0.47 0.15 4.2 0.19 2.49 0.24 0.11 4.2 0.06 3.57 0.10 0.06 4.4

each face of the original mesh and calculates their normal difference. The mathematical
formulation of the total normal error is:

E. =
1
|P |

∑
>∈F

C∈)) (> ,F+ )

(
1 −

nt · nq
‖nt‖‖nq ‖

)
+ 1
|F# |

∑
C∈F+

>∈)) (C,F)

(
1 −

nt · nq
‖nt‖‖nq ‖

)
(6.15)

where nt denotes the normal of face 1 ∈ F and "" (1, F#) the nearest neighbour of face 1
in simplified mesh P#.

Finally, to evaluate the preservation of the mesh spectral properties, the Laplacian error
was calculated between the original and the simplified mesh, defined as the Mean Squared
Error (MSE) over the first 150 eigenvectors of the Laplacian operator of the two meshes.
Throughout this Chapter, this spectral error will be referred as Laplacian Error (LE):

EI =

(∑
'

‖:̂' − :' ‖2
)

(6.16)

where :' , :̂' denotes the ,-th eigenvector of the Laplacian operator for the original and the
simplified mesh, respectively.

In Table 6.1 quantitative comparison between the proposed method and the aforemen-
tioned baselines is presented. Although the iterative QEM method better preserves the
appearance of the simplified mesh, the proposed method achieves smaller Laplacian er-
ror while at the same time attain competing performance over all error metrics. On the
contrary, the proposed method outperforms all differentiable methods and overcomes the
limitations of previous triangulation approaches. In particular, as can be easily observed
in Figure 6.3, the proposed method has very few holes compared to PointTriNet [212] as
well as less triangles in non-existing regions, such as the triangles occurring between the
thigh and the hand (top row Figure 6.3), due to the probabilistic surface distance loss
that penalizes the inclusion of such triangles. For further qualitative assessment see also
Figure 6.1.
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Figure 6.3: Qualitative comparison of the proposed and the baseline methods. The top
row contains a human shape simplified by 90% and the bottom row shows a cat model
simplified by 80%. Figure better viewed in zoom.

6.5.2 Time Performance

One of the most prominent applications of mesh simplification is inevitably rendering.
Real-time rendering requires lightweight model structures, therefore simplification al-
gorithms are commonly equipped in rendering pipelines. To this end, the time performance
is of crucial importance for the simplification process. To assess time performance, the
execution time was measured for each method to simplify 20 meshes under different sim-
plification ratios. Experimental result presented in Table 6.1 showcase the efficiency of
the proposed method, outperforming its baseline counterparts by a large margin. In par-
ticular, the proposed method runs up to 10× faster than the optimized QEM method and
at least 100× faster than its faster differentiable counterpart. Another important feature
of the proposed method is that it remains almost unaffected by the mesh scale, due to the
efficient point sampler and the lightweight structure of the face classifier. In summary,
the results highlight the fact that the proposed method could be directly plugged into any
rendering process without introducing any significant overhead.

6.5.3 Evaluation of Point Sampler

The Point Sampler is responsible for the selection of the vertices to be maintained in the
simplified mesh. To assess the performance of the sampling module the structural error
in terms of i) the Chamfer distance (CD), ii) the details preserved using the two-sided
curvature error (Curv) as suggested in [10] and iii) the time required to simplify the input
point cloud (in seconds) were measured under several simplification ratios. The proposed
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method was compared with FPS [22], uniform random sampling as utilized in [215], and
a recently introduced point cloud simplification module [10]. In Figure 6.4 qualitative
comparison between the simplified point clouds is illustrated. As can be easily seen, the
method proposed in this chapter demonstrates an improved balance between maintaining
the overall structure and retaining high-frequency details compared to the curvature-based
simplification of the previous Chapter. This will aid the triangulation step that requires
performs better under uniform point distributions. Quantitative results are presented in
Table 6.2 showcasing that the proposed point sampler outperforms the uniform random
sampler as proposed in [215] and also demonstrate a balance between the smooth and
the sharp results produced by FPS and the method proposed in Chapter 5 (Potamias
et.al.[10]). Importantly, the proposed method remains unaffected from the size of the input,
achieving a sampling of 4.2 to 24 - times faster than FPS and Potamias et.al.[10]. This
result clearly demonstrates that the proposed method can be directly utilized to sample
large-scale point clouds with the minimal computational overhead, greatly advancing the
naive random sampling approach [215]. Finally, the performance of the proposed sampling
module was assessed under noisy conditions by training on clean datasets and testing on
noisy point clouds by adding zero mean and unit standart deviation Gaussian noise to the
data. (right block of Table 6.2). It can be easily observed that the proposed method is less
affected by the presence of noise compared to its counterparts by virtue of the DevConv,
which encodes points based on the maximum relative features of the neighborhood.

Figure 6.4: Qualitative assessment of the proposed point sampling module. The proposed
Point Sampler selects points that preserve both the structure and the details of the input
cloud. The proposed method better maintains the structure of the object compared to
uniform and [10] counterparts and improves the smooth point clouds produced by FPS
module. The top row shows a dragon point cloud simplified to 5% of its input size where
as the bottom row shows the bunny shape simplified to 20% of its input size. Please note
that both shapes are not present in the TOSCA dataset.
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Table 6.2: Quantitative evaluation of the point sampling module at different simplification
ratios. The right part of the table includes the simplification performance of the various
methods when tested to noisy point clouds.

w/o Noise w Noise
"#/"$%& = 0.8 "#/"$%& = 0.2 "#/"$%& = 0.05 "#/"$%& = 0.8 "#/"$%& = 0.2 "#/"$%&=0.05

Method CD Curv Time CD Curv Time CD Curv Time CD Curv Time CD Curv Time CD Curv Time
FPS 0.01 2.21 21.2 0.81 2.99 7.84 4.02 3.42 3.86 2.11 4.07 21.2 3.47 4.35 7.84 7.31 4.79 3.86
Uniform 0.24 2.19 0.05 1.85 2.44 0.04 6.71 2.73 0.03 2.58 3.71 0.05 3.67 3.97 0.04 7.43 4.20 0.03
Potamias et al. [10] 0.03 2.14 120. 1.18 2.27 35.1 4.78 2.51 17.7 2.11 3.14 120. 3.38 3.65 35.1 7.61 4.12 17.7
Point Sampler 0.05 2.16 0.05 1.22 2.24 0.09 5.12 2.51 0.09 1.99 3.12 0.05 3.21 3.18 0.09 7.18 4.01 0.09

6.5.4 Curvature-based Simplification

A significant property of the proposed method is that all of its components are fully
differentiable. Thus, it can be seamlessly integrated to an arbitrary iterative framework
which requires gradients to flow throughout the optimization process. In this experiment,
the capability of the model to be adapted to a trainable pipeline that generates customized
simplification was explored. Specifically, the proposed method was fine-tuned to produce
simplified meshes that preserve the curvature of the original. To accomplish this, a loss
term that quantifies the curvature difference between the original and simplified meshes
was incorporated, as proposed in [10]. Experimental results revealed that the fine-tuned
method achieved an improvement of 40% (in average) to the curvature error compared
to the original version. An example is illustrated in Figure 6.5 where it can be easily
observed that the fine-tuned version focuses on preserving the rough details of the original
mesh (such as the eyes and the nose-tip) compared to the smooth mesh produced by the
untouched version of the proposed method.

Figure 6.5: Fine-tuning the proposed method for curvature driven simplification.
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6.5.5 Evaluation of intrinsic distances

To evaluate the distortion of intrinsic properties in the simplified mesh the geodesic and
spectral distances were measured between vertices in a spotted area of the surface. The
biharmonic spectral distance is calculated as in [69]. A qualitative color-coded comparison
of the cat shape simplified by 90% between the proposed method and the baselines is illus-
trated in Figure 6.6. All distances are measured form the nose tip of each shape. It can be
easily observed that the proposed method preserves both geodesic and spectral distances
of the original model compared to the distorted distances produced by the baseline mod-
els. In particular, although QEM method manage to satisfactorily preserve the geodesic
distances, it introduces enough distortion to the spectral distances that produces a thor-
oughly different iso-lines compared to the original meshes. Additionally, PointTriNet [212],
DSE [214] and Potamias et.al.[10] not only they introduce geodesic error, but also their
biharmonic distances (spectral) are less smooth compared to the proposed method.

Figure 6.6: Geodesic and Spectral distance comparison between QEM and the proposed
method. Distances are measured from the nose-tip of each shape.

6.5.6 Ablation Study

In this subsection, the importance of each loss function holds was assessed by means of
an ablation study (see Table 6.3). In particular, one component of the loss function was
removed at a time and measure the Chamfer distance (CD), watertightness percetage
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"#/"$%& = 0.05 "#/"$%& = 0.1 "#/"$%& = 0.2 "#/"$%& = 0.5
Method CD WA LE NE CD WA LE NE CD WA LE NE CD WA LE NE
Proposed w/o OV 1.01 2.21 0.98 0.20 0.42 2.24 0.52 0.15 0.19 2.52 0.27 0.12 0.06 3.59 0.12 0.08
Proposed w/o EC 1.02 2.20 0.94 0.20 0.43 2.22 0.53 0.16 0.20 2.50 0.27 0.11 0.06 3.58 0.13 0.07
Proposed w/o TC 1.03 2.22 1.54 0.42 0.42 2.24 0.97 0.36 0.19 2.51 0.78 0.32 0.06 3.58 0.58 0.28
Proposed w/o PSD 2.12 10.24 1.35 0.23 1.33 9.14 0.96 0.19 0.96 6.75 0.77 0.18 0.52 5.97 0.54 0.13
Proposed-Full 1.02 2.17 0.90 0.19 0.42 2.21 0.47 0.15 0.19 2.49 0.24 0.11 0.06 3.57 0.10 0.06

Table 6.3: Quantitative results of the ablation study over the loss functions. OV, EC,
TC, PSD denote overlap loss, edge crossing loss, triangle collusion loss and probabilistic
surface distance loss, respectively.

(WA), the Laplacian error (LE) and the normals error (NE) at several simplification
ratios. It can be easily observed that the models trained without overlap (OV), edge
crossing (EC) or triangle collusion (TC) losses, although they achieve similar CD and
NE, they fail to preserve the Laplacian of the initial mesh since the irregular triangles
perturb the geodesics of the mesh. In addition, as illustrated in Figure 6.7, model trained
without the Probabilistic Surface Distance (PSD) loss, generates irregular triangles and
introduces holes to the triangulation that increase CD and WA errors. Ablation result for
the Probabilistic Chamfer Distance were not reported since it is the only loss applied to
the Point Sampler module. All methods were trained on the TOSCA dataset using the
same train-test split.
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Figure 6.7: Ablation study: Qualitative comparison indicating the contributions of each
loss function. Zoomed areas illustrate areas with irregular triangles.

6.5.7 Simplification of Textured Meshes.

Although in this study, the main focus is on mesh shape simplification, it is reasonable
to assess the appearance of simplified textured meshes. In this experiment, the texture
preservation of simplified meshes was qualitatively examined. A checker pattern was
applied to the TOSCA shapes, and the similarity of the simplified models with the originals
was evaluated. From Figure 6.8, one can observe that the texture of the QEM method is
unsettled and that the sharp corners of the checker have become smoother. In contrast,
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the proposed method exhibits significantly less noise and better preserves the details of
the original texture. Additionally, the proposed method was assessed in a real-world mesh
scenario using a textured mesh from a human face (bottom row Figure 6.8). As observed,
the proposed method successfully maintains the texture characteristics of the face.

Figure 6.8: Simplification of textured meshes. The human shape model (top row) meshes
are simplified by 85%, the cat model (medium row) is simplified by 90% and the face
model (bottom row) is simplified by 80%

6.5.8 Simplification of noisy meshes.

Although in real-world applications a noise filtering prepossessing step is always present,
the simplification performance of the proposed method under noise conditions was exa-
minded. The devised Point Sampler module is less affected by noise compared to its coun-
terparts due to the DevConv structure. Qualitative comparison between the proposed and
the baseline models is illustrated in Figure 6.9. The performance of Point Sampler leads
to better triangulation and thus smoother simplified meshes compared to the PointTriNet
[212] and DSE [214] modules. QEM method struggles to find the planes associated with
each point and generates artifacts to the simplified mesh. Ball pivoting algorithm, utilized
in [10], fails to properly triangulate the simplified point cloud and requires careful hy-
perparameter tuning to avoid irregular triangles. On the contrary, the proposed method
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produces smooth results, e.g. the rack of the Centaur model, and manages to generate a
simplified model that preserves the appearance of the input.
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Figure 6.9: Qualitative comparison of the proposed and the baseline methods on noisy
mesh simplification. The top row contains a centaur shape simplified by 90% and the
bottom row shows a dog model simplified by 90%. Figure better viewed in zoom.

6.6 Conclusion and Limitations

In this Chapter, an attempt to mark a step towards a totally learnable mesh simplification
framework was described. The first differentiable mesh simplification model was proposed
based on the advances of graph neural networks. The run-time efficiency and lightweight
structure of the proposed model enables its direct use in a wide range of differentiable
applications. The proposed method outperforms all of its differentiable counterparts. A
limitation of the proposed method is that, although the model was enforced to preserve
the topology and the manifoldness of the generated meshes using tailor-made loss func-
tions, it can not be explicitly guaranteed. Inevitably, QEM produces smother watertight
surfaces with finer details compared to the proposed method. However, QEM comes with
a greater computational cost, along with a non-differentiable nature that limits its range of
applications. Arguably, the rationale underlying the proposed method and the presented
findings of this Chapter will benefit the 3D computer vision community.
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CHAPTER 7

CONCLUSION

Contents
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Triangular meshes have been established as the most popular way to represent
3D discretized surfaces. Given that the set of faces that discretize the surface is
constructed by a set of ordered vertex triplets, 3D meshes can be considered as

undirected graphs embedded on R3. The limitation of traditional point based processing
of 3D sets to adherit local inductive biases to the learning process has emerged the need of
exploiting geometric deep learning approaches. The goal of this thesis is to highlight the
expressive power of Graph Neural Networks and Geometric Deep Learning to overcome
the limitations of traditional 3D shape analysis methods. The thesis can be divided in
two parts, the use of mesh convolutions to model 3D shape surfaces and the expressivity
of GNNs to identify semantics and simplify 3D shapes. Regarding the first part, mesh
convolutions outperformed traditional statistical methods, such as PCA, to model both
static as well as dynamic 3D meshes. Additionally, GNNs demonstrated their expressive
power to identify salient parts of 3D object and simplify meshes and point clouds while
retaining most of their semantics. Finally, in this thesis, GNNs were also explored as
message passing networks that propagate information across the mesh faces by creating
implicit graph on the mesh face set.

In particular in Chapter 3, the first large scale deformable hand model of the human hand
was presented, trained with over than 1200 different subjects, the largest and most enriched
dataset so-far. To train a statistical model the scans were brought into correspondence by
registering them in a common template. To do so, each hand was rendered from multiple
views and 2D landmarks were detected. The landmarks were then lifted to 3D using linear
triangulation. Those landmarks are then used to fit a PCA-based hand model and that acts
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as an initial alignment between the template and the raw scan. The final registrations
are acquired by applying non-rigid iterative closest point between the aligned template
and the raw scan. Additionally, the texture UV maps were transferred from the raw
scans to a common UV template by finding the correspondences between the barycentric
coordinates of the two meshes. Then, a high fidelity mesh convolutional autoencoder that
is based on spiral mesh convolutions was trained and contrasted with state-of-the-art hand
models that rely on PCA decomposition. Experimental results show that the graph based
autoencoder is able to preserve low frequency details with way less parameters. In a series
of experiments, the proposed hand model achieved remarkable reconstruction performance
and it is able to fit 3D human hands from diverse age and ethnicity groups.

Next, in Chapter 4 the idea of creating a deformable 3D model using mesh convolutions
was extended to dynamic meshes. Until recently, the common practice to model 4D
mesh sequences was by interpolating the parameters of a statistical model such as PCA.
However, interpolation on the latent space hinders the generated meshes to realistic poses.
The proposed method is composed by a LSTM encoder network that autoregressively
encodes the expression labels to a latent vector that drives the decoder to the desired
expression. Spiral mesh convolutions are utilized for the encoder which, can effectively
animate the mesh and enable the creation of realistic and extreme expressions. On the
contrary, PCA based decoder fails to create sharp details and extreme deformations when
animating the mesh resulting in poor realism of the generated expressions. Importantly,
the proposed model, that is based on graph convolutions, experimentally outperformed
PCA blendshape model by a large margin in challenging areas such as mouth, cheeks
and eyebrows that deform the most during facial expressions. The proposed expression
animation model acts directly on the deformation space which ensures the preservation of
the subject’s identity details. Given that the expression labels can take values over the
continuum of each frame, the user can fully-customize the desired generated expression
along with its intensity. Finally, the proposed method can be used to animate human
expressions directly from images generating realistic expressions that are very similar to
the original subjects’ expressions.

In Chapter 5, another long studied problem in 3D processing was revisited, namely sim-
plification. A major drawback of 3D models is that they usually require an enormous
amount of points to properly describe a surface in high resolution and high fidelity. From
modern 3D scanners to sample continuous surfaces, the acquired point clouds contain
redundant amount of information making processing, editing and storing point clouds a
challenging task. Particularly, this Chapter attempts to tackle the limitations of tradi-
tional methods that rely on time consuming iterative optimizations by utilizing graph
neural networks. To construct the underlying graph from the point cloud structure, an
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efficient k-nn strategy was used. The core of the method proposed, lies on the non-linear
projection of the points to high dimensional space that can effectively discriminate salient
versus non salient points. Using traditional Farthest Point Sampling on the embedded
space, a set of anchor points were sampled in real time while retaining the gradient flow
through the projection network. The final component of the proposed network is a refine-
ment module, a graph neural network that modifies the anchor points positions given their
respective neighbours to match the appearance of the original high resolution point cloud.
To maximize the appearance similarity, a curvature oriented loss function was utilized
that has been shown to highly correlate with human perception. The proposed method,
apart from real time simplification, can simplify point clouds at any scale simply by modi-
fying the number of anchor points sampled by Farthest Point Sampling. Additionally,
the proposed method can generalize well on unseen point clouds avoiding solving time
consuming per-cloud optimizations. Compared to traditional methods such as Farthest
Point Sampling on 8IJ-space and Quadric Simplification that produce smooth results with
almost uniform sampling, the proposed method preserves much more details of the input
even at extreme simplification ratios (i.e. 5% of the original size). Besides its merits and
advantages, a limitation of this method however is that Farthest Point Sampling can be
very time demanding for high simplification ratios and large-scale point clouds. Addi-
tionally, the proposed method can only simplify meshes treated as point clouds and then
re-triangulated using off-the-self meshing algorithms, a fact that limits its applicability on
meshes.

In Chapter 6, the Point Cloud Simplification method presented in the Chapter 5 was
extended, by proposing a neural based mesh simplification method that tackles the limit-
ation of the literature. The devised method relies on an advanced point-sampling module,
using a differentiable constant complexity real-time sampling module, based on assigning
inclusion probabilities to the vertices of the input mesh based. A relative position GNN
is utilized that embeds each vertex on a high dimensional space that captures local sur-
face details, and then assigns an inclusion probability to each one of them. To enable
real-time sampling, a multinomial point sampler is settled that samples points according
to their inclusion probability. The second part of the proposed network is composed by
an edge predictor that constructs an extended, to the original, mesh graph by connect-
ing the sampled vertices with the original vertices sets. Using the candidate edge set, a
candidate face set was constructed simply by connecting the triplet of points that share
edges. The final module of the proposed method is composed by a Face Classifier that
learns to assign an inclusion probability to each formed triangle based on the regularity of
the triangle using a novel triangle-graph convolution. The devised triangle convolution,
named TriConv, acts directly on a graph constructed between the barycentric coordinates
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of each triangle and takes as input the relative features of each triangle face and assigns an
inclusion probability to each candidate face. To train the proposed method a combination
of loss functions is used, in order to constrain the generated mesh, not only match the
appearance of the original mesh, but also to produce a smooth surface on the simplified
point cloud. The proposed method is extensively evaluated in a series of extensive exper-
iments that revealed its power to outperform traditional methods under several metrics.
Finally, apart from real-time execution, the proposed method has contributed to meshing
producing smooth meshes.

Ethical Considerations

Developing a models that are able to generate and animate 3D human hands and 3D facial
expressions raises important ethical considerations. Although all of the data used in this
thesis have been granted with consent forms from the subjects participated in the data
collections, it is necessary to protect their individual rights and prevent potential misuse
of the data. Furthermore, given the large diversity of the data used, responsible utiliz-
ation of these models is essential. Ongoing monitoring and assessment of the network’s
outputs should be in place to identify and rectify any unintended consequences or ethical
implications that may arise from its deployment. It’s imperative to use these technologies
in a manner that upholds ethical standards and societal well-being, ensuring responsible
and accountable practices.

7.1 Future Work

While all of the aforementioned methods can be considered a step forward for 3D shape
analysis, modeling and simplification of 3D meshes and point clouds, the work presented
in this thesis opens up opportunities for further extensions and improvements in a number
of ways:

• Although the hand model presented on Chapter 3 presents a step towards a highly
detailed hand modeling it lacks a blend skinning model that deforms the human
hand given a target pose. A common issue of linear blend skinning model is the
volume loss under certain poses [119, 2]. Traditionally, this issue is mitigated by
hand crafted pose that deforms the posed hand to preserve the volume of the original
mesh. However, this process requires an artist to carefully design the pose corrective
for a wide range of poses and can not be transferred to different templates. A
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crucial and important extension of the proposed model would be the creation of a
neural skinning module that will pose a hand without the need of hand correctives.
This would require a large scale dataset with many subjects that pose different
hand expression such as the one acquired in Science Museum London in 2019 that
contains over 1400 subjects with a variety of hand poses. The first step to train a
hand-model is to encode hand pose information which, demands registered data on
a common template. With this modeling approach will manage to overcome posing
limitations of current hand models [25, 2] and will completely decompose pose from
blend skinning methods. Current approaches implicitly constrain hand poses to be
close to the open pose or by hand crafted rotation matrices, making their solutions
constrained and sub-optimal, allowing the network to generate irregular poses. By
training a network with such a large scale dataset of hand poses, it is feasible to
directly construct a strong pose prior that will constrain the pose space to plausible
hand poses.

• Recently, diffusion models have emerged as powerful generative models in the field of
computer vision achieving outstanding results and providing a powerful tool for im-
age generation [221, 222]. Given their ability to generate sharp and detailed images
while overcoming mode collapse issues of GANs, diffusion models have been estab-
lished as generative models in the field. Although several works have attempted
to extend diffusion models to 3D generative task, the field is relatively unexplored.
Currently, two methods have been proposed to generate 3D point clouds from noise
using the denoising diffusion formulation [223, 224] that attains promising results.
However, even though they produce noisy clouds by injecting noise at point level
they completely neglect the underlying structure of the point cloud resulting in
non-smooth results. Given that graph neural networks tend to generate Laplacian
smooth surfaces by their formulation, one could extend traditional 3D modeling by
bridging the two worlds of geometric deep learning and diffusion models. In partic-
ular, instead of neglecting the connectivity between points, noise could be diffused
while at the same time retaining the input connectivity. Subsequently, the denois-
ing process would be formulated with mesh convolutions that respect the topology
of the surface. Such method could explore the potential application of denoising
diffusion models on both meshes and point clouds provide a powerful alternative
to Variational Autoencoders and PCA models. Apart from static 3D deformable
models, the potential impact of diffusion models on dynamic mesh generation could
be also examined, extending the research presented in Chapter 4.

• Another important direction to explore would be the combination of different mod-
alities apart from 3D meshes, such as speech signals. In particular, a very impactful
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application that could arise from the combination of static and dynamic 3D models
would be a generative sign language hand model. A lot of effort has been set in
the design of models that detect, decode and understand sign language however the
generation of hand poses that translate to sign language is particularly unexplored.
During the data collection at Science Museum during 2019, a set of sign language
poses were performed by volunteers that would set a strong prior for the generation
of realistic human sign language. It is extremely challenging, however, to combine
generative 3D model with a different modality such as speech or text. Over the last
years, several 2D datasets that contain annotated videos of sign language have been
developed [225, 226] that would be beneficial in order to translate speech and text
to 3D hand poses.

• In Chapter 6, a novel method to simplify meshes and point clouds was presented. By
learning to directly triangulate a set of sparse points, without the time-demanding
iterative collapsing method, a real-time solution was proposed, that is able to sim-
plify meshes on-the-fly. However, the proposed method cannot guarantee that the
resulting meshes will always respect the manifold criteria. Particularly, instead of
applying a loss to penalize irregular triangles, a small manifold patches could fitted
which will guarantee the that the triangulated points will be manifold. Such method
will not only advent the research of neural mesh simplification but also the neural
triangulation that has received a lot of attention over the last years.

• In addition to its limitations on the meshing process, the proposed neural simplific-
ation method lacks the ability to directly simplify a mesh according to its texture
appearance. As shown in Texture-based Quadric Mesh Simplification [59], shape
and texture driven simplification result in completely different renderings. Con-
sidering that the proposed method is fully differentiable, one can simply fine tune
the proposed method with an additional loss function with the aim to preserve the
texture of the original mesh. This could be implemented by taking advantage of a
differentiable renderer and by maximizing the similarity between the original mesh
rendering and the simplified one. The aforementioned extension will benefit many
applications such as video games and analysis-by-synthesis that require real-time
renderings. By simplifying a highly detailed 3D mesh in real-time, rendering will be
extremely accelerated while at the same time the resulting rendering quality will be
preserved.

• Apart from the aforementioned limitions presented in this thesis, there is a common
major limitation in the field of 3D modeling. In general, 3D models have been
traditionally trained on a fixed discretized surface with a pre-specified number of
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points and faces. Spiral mesh convolutions exploit the inherited correspondences
of the common topology and follow a common pattern across each neighborhood
of the mesh. However, the common template requirement prevents from modeling
arbitrary topology meshes and usually a lot of effort is required to align and register
the meshes in a common template. Recently, some methods have attempted to create
3D morphable models without registered data by using implicit functions [227, 228].
However, implicit functions rely on signed distance fields which cannot be directly
edited and visualized in common graphics software tools and usually a meshing step
with Marching Cubes [229] is required. A solution to alleviate such issue would
be a mesh convolution operator that does not rely on the fixed topology of the
mesh but implicitly aligns meshes based on their structural features. Such operator
should implicitly order the neighborhood and exploit the intrinsic correspondences
of each mesh. With this formulation, mesh convolutions would enable imitation
of the behaviour of CNNs without having to explicitly define the ordering of each
neighborhood.
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