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Abstract

In recent years, there has been a surge in the availability of 3D sensors, leading to an
exponential increase in the amount of 3D data, paving the way for remarkable advance-
ments in 3D computer vision applications. The advances of deep learning on geometric
data with irregular structures, such as meshes and point clouds, have further enhanced

the ability to analyze and understand 3D shapes.

In this thesis, we explore the usage of geometric deep learning methods in 3D shape
analysis. The thesis can be divided into two parts. In the first part, the advancements of
non-linear localized mesh convolutions to tackle the limitations of traditional statistical
shape modeling methods, such as PCA, to capture fine details and extreme deformations
given its linear structure and global structure is shown. In particular, the cases of static
and dynamic neural deformable models are explored using a localized mesh convolution
operator to generate high fidelity deformable models. Using a large scale dataset of hand
scans composed by over 1200 subjects, a fine-grained neural hand model is constructed that
is able to outperform current state-of-the-art hand models. To explore the expressive power
of graph convolution in dynamic morphable models, a 4D generative model is proposed
that is able to manipulate 3D faces and generate dynamic expressions fully customized by
the user. Both models achieve state-of-the-art performance that outperforms traditional
PCA deformable models.

However, dealing with high-fidelity models poses several challenges, especially when it
comes to processing and storage. The enormous amount of points needed to capture
the fine-grained features of such models can be computationally expensive and memory-
intensive which limits their real-time applications. In the second part of this thesis, two
neural based simplification methods are proposed to simplify point clouds and meshes in
real-time. Both methods rely on graph neural networks to capture rich local and global
topological information of the 3D objects. Initially, a point cloud simplification method
is proposed that samples points in an sophisticated matter to preserve the underlying
perceptual features of the point cloud. Then, the simplification method is extended to
meshes through a graph neural network triangulation module that constructs the faces
of the simplified mesh. Through extensive evaluations and comparisons with state-of-the-
art baselines, we demonstrate the effectiveness and efficiency of our method in preserving

important shape characteristics while significantly reducing the data size.
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INTRODUCTION
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1.3 Contributions . . . . . . . . e 6
1.4  TImpact and Applications . . . . . . . ... L oo 8
1.5 Publications . . . . . . . .. 9
1.6 Thesis Outline . . . . . . .. . .. 10

1.1 Problem Scope and Challenges

N the recent days, the growth of the internet, social media, and digital devices has

led to an explosion of visual data, with millions of images and videos being uploaded

and shared every day. The vast amount of available data along with the development
of specialized hardware, such as graphics processing units (GPUs), has contributed to the
rise of deep learning era. Deep learning has revolutionized several fields ranging from in
natural language processing and machine translation [11, 12] to speech recognition and
computer vision, enabling tremendous breakthroughs in image recognition [13], object
detection [14, 15], and semantic segmentation [16]. Deep learning models are function
estimation methods designed to learn hierarchical representations of visual data, allowing
them to identify complex patterns and features in images, videos, and other visual data
with unprecedented accuracy and efficiency. Usually they are composed by many layers

that have the capacity to interpolate large-scale datasets.

However, the majority of deep learning methods that have been proposed apply to data

with Euclidean structures, such as 1D sequences or 2D grids and do not translate to ir-



regular structured data. Initial approaches attempted to tackle irregular data, such as 3D
shape, using euclidean representations in order to leverage well studied approaches such
as Convolutional Neural Networks (CNNs). One of the most famous representations to
approximate the 3D surface are 3D Voxel grids, that can be processed using volumetric
CNNs, defined directly on the Euclidean grid [17, 18, 19]. However, the major disadvant-
ages of volumetric approaches include their substantial computational complexity and
imprecise representation, which can distort the topological characteristics of the shapes.
Additionally, these methods exhibit a significant redundancy, as they explicitly model the
interior of the shape, whereas in many applications, the focus is primarily on the surface.
Such limitations enforced the generalization of deep learning on irregular structured data,
such as graphs and manifolds. Nevertheless, their inherit lack the notion of ordering and
distancing has a great impact on directly applying deep learning techniques to such struc-
tures. During the last years several methods have arisen that explore deep learning models
on irregular domains that either completely lack structure, such as point sets, or lie on
non-Euclidean domain, such as graphs and manifolds. The manifestation of deep learning
models on irregular data has been established with the umbrella term “Geometric Deep
Learning” [4]. Social networks that define the relations between social media users, the
protein structure in a molecule as well as Riemannian manifolds that define 3D objects are
only some of the examples that can not be modeled directly with traditional deep learning

techniques. In this thesis we will only refer to three types of irregular data:

e Point Clouds: They belong in the category of sets, which are a mathematical
model for an unorganized collection of items. In their simplest form they contain
an unstructured set of points embedded on the 3D space. Point clouds are widely
used given that they are lightweight and the most accessible representation of 3D
surfaces. However, unlike grid-like data structures, point clouds lack any inherent
ordering, making it difficult to apply traditional order-dependent machine learning

techniques directly to them.

¢ Manifolds and Meshes: In mathematics, a manifold can be considered as a a to-
pological space that generalizes a surface in a way that it is locally homeomorphic to
a Euclidean space. In other words, even though manifolds may have a more complex
global structure they retain the properties of Euclidean spaces in a local level for
small neighborhoods around each point. Manifolds can have various dimensions and
shapes, and they are often used to model real-world phenomena with complex struc-
tures, such as surfaces, spaces of shapes, or even the space of all possible solutions
to a system of equations. Meshes are considered as 2D manifolds or discrete surfaces

and they are constructed by a collection of points and faces that define the surface



approximation. They are usually triangular or quadrilaterals according to the for-
mulation used to represent their faces. They are among the most popular ways to
represent a 3D object in computer vision and graphics along with Point Clouds and
Voxel grids. However, similar to Point Clouds, the lack of intrinsic ordering makes
applying deep leaning non-trivial task. A comparison between Point Clouds, Meshes

and Voxels is illustrated in Figure 1.1.

e Graphs: They can be considered as a broad representation category of such irreg-
ularly structured data. A graph, in its general form, describes a system of relations
along with their corresponding interactions. The objects of the system are usually
called nodes or vertices and their relations links or edges. Graphs can be directed or
undirected, depending on whether its edges have a specific direction. In a directed
graph, the edges have a direction that information flows, while in an undirected
graph, the edges do not have a direction and messages from nodes are transmitted
in both ways. They can also be weighted or unweighted, depending on whether the
edges have a weight or value associated with them. In a weighted graph, the edges
have a numerical weight, while in an unweighted graph, all edges have the same
weight. Given that a large amount of real world problems that naturally take the
form of graphs, they are widely used in computer science, including in areas such
as network analysis, social network analysis, and optimization. They are also used
in many real-world applications, such as transportation networks, electrical circuits,

and molecular structures.

Recently, Implicit Functions have also received a lot of attention as a way to represent
3D objects. Implicit functions enable the encoding of complex 3D shapes and structures
without the need for explicit surface representations or voxel grids. Instead, they define
surfaces as the zero-level set of a continuous function, making it easier to generate, manip-
ulate, and render intricate 3D objects. They offer a versatile and compact way to capture
and work with 3D data, ultimately pushing the boundaries of what’s possible in 3D mod-
eling and visualization. However, similar to voxel grids, the computational complexity
they introduce is analogous to the sampling rate which limits their application in large
scale datasets. Additionally, given their ability to can represent arbitrary mesh topologies
without leveraging the intrinsic shape correspondences, they tend to perform worse com-
pared to mesh representations in fixed topology settings. Finally, one of the significant
limitations of implicit functions is the need for a meshing step, often involving algorithms
like Marching Cubes, to convert the implicit representation into a mesh format that can

be rendered and processed by common graphics engines and software.

On the other side, 3D point clouds or point sets, have been treated using a shared func-



Point cloud Voxel Polygon mesh

Figure 1.1: Various representations of a 3D bunny object. (Figure from [3])

tion over the points, which by construction hold the permutation equivariant property. In
particular, both PointNet [20] and DeepSet [21] architectures have revolutionized the pro-
cesses of point sets, achieving impressive performance on several benchmarks. Their basic
idea is to learn a spatial encoding of each point and then aggregate all individual point
features to a global point cloud signature. However, such formulation can only generate
global representations and lack the ability to describe local structures and patterns. In
an follow up work, PointNet++ [22], re-formulated the point cloud as a graph structure
with edges locally connecting neighboring points. Such restructured approach could better
imitate the concept of locality, that contributed to the success of Convolutional Neural
Networks (CNNs) in Euclidean domain. PointNet++ achieved remarkable results and
pioneered the formulation of Point Clouds as graphs. In the case of 3D meshes, the refor-
mulation to a graph structure comes naturally given that each vertex can be considered
as a node of a graph connected with a set of edges that form its faces. GeodesicCNN [5]
initially generalized the convolutional networks (CNN) paradigm to non-Euclidean man-
ifolds by constructing a local geodesic system of polar coordinates to extract “patches”
The designed geodesic kernel was by construction invariant to deformations which was an
intrinsic analogy of regular convolution. However, the fixed size and the ordering of each
neighborhood, factors that enabled the weight sharing and the intrinsic correspondences
between patches in CNNs, can not be trivially defined in non-Euclidean meshes. To ad-
dress this, several methods have proposed to use fixed trajectories to count vertices around

each neighborhood and then apply regular convolution [6, 7].

1.2 Objectives

The aim of this PhD is to explore the use and application of geometric deep learning and

mesh convolutions to mitigate several issues of traditional methods of 3D shape analysis



and tackle common problems of mesh processing. This thesis can be divided in two parts.
In the first part, two novel methods for 3D static and dynamic shape modeling are presen-
ted (Objectives 1 & 2) that aim to tackle the limitations of traditional shape modeling
to capture high frequency non-linear details of a 3D surface using mesh convolutions. In
the second part of the thesis, the storage processing requirements of such high fidelity 3D
models are stressed and two novel graph neural network based methods for 3D shape sim-
plification are proposed (Objectives 2 & 3). We evaluate their contribution to 3D meshes
and point clouds under several applications, in terms of performance, compactness and

runtime. In particular, the main objectives of this thesis are:

e Objective 1: To address the limitation of traditional 3D modeling to generate sharp
shapes from compact representations. In particular, traditionally shape modeling,
also called morphable modeling, is performed using Principal Component Analysis,
which can only generate smooth meshes that lack details. In this thesis, we attempt
to tackle this limitation of PCA 3D models by exploiting neural networks with mesh

convolutions to create expressive 3D models.

¢ Objective 2: Similar to static 3D morphable models, the design of expressive dy-
namic morphable models that can generate realistic animations is also essential. A
major limitation of statistical blendshape PCA models is their inability to generate
extreme deformations. Till now, intense expressions and facial animation can only
be generated by modifying artist-defined rigging. This makes modeling of human
faces with extreme facial expressions especially challenging. In this thesis, we ex-
plore the power of mesh convolutions to create a framework that is able to generate

photorealistic animation beyond traditional PCA blendshapes.

¢ Objective 3: Another challenge in the field of 3D computer vision is salience detec-
tion and simplification in 3D meshes and point clouds. Usually, 3D objects contain
an enormous amount of points in order to be rendered with high detail. However,
such information is usually redundant and affects the storage and processing require-
ments. In the literature, sampling and simplifying point clouds in a fast and efficient
manner remains challenging. By utilizing graph neural networks we aim to explore

both local and global patterns and overcome the limitations of the literature.

e Objective 4: Finally, another direction covered in this PhD is the implementation
of a neural, graph-based, method that learns to triangulate 3D point clouds. Point
cloud triangulation remains an unsolved problem that have been extensively studied
in 3D community. Current methods either require an excessive amount of points

or hand-crafted engineering to generate smooth results. Using the locality of graph



neural networks we aim to develop a method that can generalize to arbitrary shapes

and accurately triangulate point clouds in real-time.

1.3 Contributions

In this section, we summarize the contribution of this thesis according to the aforemen-
tioned scope and objectives. The main objective of the work presented in this thesis is to
utilize the advents of geometric deep learning and specifically mesh convolutions and graph
neural networks in 3D shape analysis in order to overcome the limitations of traditional

3D modeling and simplification techniques. In particular

e In Chapter 3 we present the first large scale 3D hand model composed by over
than 1200 subjects, which constitutes the first hand model trained with such large
and diverse dataset. Currently, most methods that reconstruct and estimate human
hand poses rely on the low polygon MANO model. However, this model has limited
capability to capture diverse shape characteristics of real human hands because it
was trained on only 31 adult subjects. Additionally, hand textures have been largely
neglected in current methods. In this Chapter we address these issues by proposing
a new shape and appearance hand model called “Handy-++" trained on a large scale
dataset with diverse ages, genders, and ethnicities. To train the shape component of
Handy++ we utilize spiral convolutions which prove beneficial to model the details
of the hand compared to traditional PCA models. Handy offers improved robustness
and accuracy over existing methods. The contribution of the aforementioned shape
method is not limited to hand shape modeling given that it can be easily applied to
different types of 3D modeling such as faces and bodies and model sharper shapes
compared to PCA models. Finally, we contribute to the community by making the

model publicly available.

¢ In Chapter 4 we tackle the unexplored problem of dynamic generation of 3D meshes
using mesh convolutions. In particular, although static 3D facial expression models
have been widely studied, the generation of photorealistic facial animation remains
relatively unexplored. In this Chapter, we implement a model that animates a
static 3D face in a fully customized way. Using a large scale dataset composed
of 180 subjects posing a series of different expressions, enables the generalization
of the proposed method to any subject simply by switching the identity template.
The contributions of this Chapter can be summarized in a) the introduction of a

challenging task of dynamic facial expression generation, b) the creation of a versatile



generative model that can generate “a-la-cart” 4D expressions given a single mesh
template and c) the implementation of a robust GNN decoder that generates sharp
and extreme animations compared to blendshape models. Finally, we demonstrate
that the proposed method can be utilized to animate and manipulate the expressions

of any given subject from a single in-the-wild image.

In Chapter 5 we introduce a learnable point cloud simplification method that learns
to sample points from a point cloud according to their saliency. Traditional mesh and
point cloud simplifications methods rely on time-consuming optimization schemes
that iteratively sample or discard points according to their importance. However,
in a real world scenario with hundreds of thousands points such scheme will set a
large computational burden. In this Chapter, we rely on a series of studies that
suggest that curvature related features highly correlate with the human perception
and provide the salient cues of the 3D object. We construct a graph neural network
based architecture that assigns an inclusion probability to each point of the input.
The core of this method is the Farthest Point Sampling module which is used to
sample points from a learnable latent high dimensional space, which has never been
previously exploited. A combination of novel loss functions is used to reinforce the
selection of points with increased curvature while at the same time retaining the
overall structure of the point cloud. The proposed method not only achieves better
perceptual similarity preservation compared to traditional method but also attain
a better runtime. The simplification module shows great generalization and can be
directly applied without further training to any point cloud. Finally, we showcase
that such method can be apply to meshes simply by following a triangulation step
after the sampling phase.

In Chapter 6 we built upon the idea of learnable simplification method and we
propose a neural mesh simplification framework. Although the point cloud simpli-
fication method can sample salient points with high performance, it lacks the ability
to directly optimize the surface of the simplified mesh. This limits its applicability
in mesh simplification scenarios. To tackle this limitation and also accelerate the
runtime of the point sampling module we propose a GNN-based neural mesh simpli-
fication module that learns not only to sample points from the input mesh but also
triangulate them. Compared to traditional simplification approaches that collapse
edges in a greedy iterative manner, we propose a fast and scalable method that sim-
plifies a given mesh in one-pass. The contributions of this Chapter are three-fold.
Initially, we develop a constant complexity GNN-based sampling module that ex-
tends the notion of random sampling by sampling from a multinomial distribution.

To train this module we propose a soft relaxation of Chamfer distance that assigns



high inclusion scores to points that preserve the structure of the input. Secondly, we
introduce a learnable triangulation module that predicts candidate triangles and as-
signs an inclusion score according to their properties. To formulate this module, we
propose to construct a graph on the candidate faces to enable information exchange
between them and then apply GNN layers to the face graph. We demonstrate that
such formulation is crucial for one-pass triangulation and the proposal of triangles
that respect manifold properties. Thirdly, we introduce a set of novel loss func-
tion that aim to preserve both the appearance and the structure of the input mesh
along with the surface properties of a mesh. Experimentally we show that those loss
function enable the generation of smooth, manifold and watertight simplified meshes
that outperform the traditional state-of-the-art methods. The method proposed in
this Chapter is lightweight and fully differentiable which can be translated in large
flexibility in the selection of loss functions and direct adaptability to any learnable
pipeline without a significant overhead. Finally, we demonstrate that the running

performance can be up to 10-times faster than traditional methods.

1.4 Impact and Applications

In this thesis we exploit the impact of geometric deep learning in common 3D task such as
modeling and simplification. The proposed hand model, the dynamic face 3SDMM along
with the point cloud and mesh simplification methods that were developed through this

thesis can be used in a large variety of application including but not limited to:

e Medical and Human Assistive Applications: Given that the proposed hand
model is photorealistic and highly detailed it can aid the development of realistic
and practical prosthetics for hand disabled people. Additionally, it can impact the
creation of speech-to-sign-language methods that will translate speech signals to sign
language for deaf persons. Finally, the large amount of available subjects’ meta-data
can contribute to biometric applications in estimating the weight and the height

along with the ethnicity of a subject based on their hands.

¢ Graphics: Undoubtedly, a generative model that is able to animate a human face in
a photorealistic manner would be beneficial in the gaming and graphics community
along with augmented and virtual reality research (AR/VR). The task of human
avatar animation in a human-like way is an ongoing task for the gaming industry and
filming industry with current state-of-the-art role-play games being far away from

realism. In addition, our simplification methods can aid the graphics community



to accelerate rendering, which is the biggest bottleneck in real-time applications, by

rendering simplified meshes that preserve the details of the original.

e Autonomous Driving: Nowadays, LiDAR (Light Detection and Ranging) sensors
are one of the key technologies used in autonomous driving cars to enable them to
perceive and interact with their environment. However, although LiDAR sensor can
scan 3D scenes in real-time they generate extremely dense point clouds containing
an enormous amount of redundant information creating a computational burden in
real-time processing. The point cloud simplification method proposed in this thesis
could be proven beneficial for the detection of semantic features of the scans and aid

the performance of autonomous driving systems.

¢ Scanning devices: With the advent of 3D scanning devices it is now possible to
acquire highly detailed 3D meshes and point clouds with high frames per second
(FPS) ratios. Nevertheless, such meshes and point clouds usually come at an un-
necessary increased resolution that leads to huge storage requirements. Using the
proposed simplification methods one could simplify the acquired scans to the re-
quired resolution as well as reinforce the simplification objective according to the

desired properties of the object.

1.5 Publications

In this Section, a list of publications is provided that I authored during the years of my
PhD studies. The publication list is split in two parts: a) the publications which are
the direct outcome of this thesis’ objectives, and b) the publications that are not directly

related and will not be covered in detail.

1.5.1 Relevant Publications

¢ Rolandos Alexandros Potamias, Jiali Zheng, Stylianos Ploumpis, Giorgos Bour-
itsas, Evangelos Ververas, Stefanos Zafeiriou, Learning to Generate Customized Dy-
namic 3D Facial Expressions, Proceedings of the European Conference on Computer
Vision (ECCV), 2020 [23].

¢« Rolandos Alexandros Potamias, Giorgos Bouritsas, Stefanos Zafeiriou, Revisit-
ing point cloud simplification: A learnable feature preserving approach, Proceedings
of the European Conference on Computer Vision (ECCV), 2022 [10].



¢ Rolandos Alexandros Potamias, Stylianos Ploumpis, Stefanos Zafeiriou, Neural
Mesh Simplification, Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022 [24].

¢ Rolandos Alexandros Potamias, Stylianos Ploumpis, Stylianos Moschoglou, Va-
silios Triantafyllou, Stefanos Zafeiriou, Handy: Towards a high fidelity 3D hand
shape and appearance model, Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023 [25].

1.5.2 Other Publications

¢ Rolandos Alexandros Potamias, Alexandros Neofytou, Kyriaki Margarita Bintsi,
Stefanos Zafeiriou, Graphwalks: efficient shape agnostic geodesic shortest path es-
timation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPR~w), 2022 [26].

o Kyriaki-Margarita Bintsi, Vasileios Baltatzis, Rolandos Alexandros Potamias,
Alexander Hammers, Daniel Rueckert, Multimodal brain age estimation using inter-
pretable adaptive population-graph learning, Medical Image Computing and Com-
puter Assisted Intervention (MICCAI), 2023 [27].

1.6 Thesis Outline

In Chapter 2 we introduce the essential background knowledge on geometric deep learning
and graph neural networks and we present the current state-of-the-art models. Chapter
3 presents a static neural morphable model for the case of hand shape modeling and
GAN-based texture model. In Chapter 4 we present the first neural dynamic morphable
model that is able to generate realist 4D facial animations. In Chapter 5 we introduce
the necessity for simplification on 3D models and we present a GNN method to simplify
point clouds. The task of simplification is extended in meshes in Chapter 6, where we
present a real-time neural mesh simplification method. Finally, in Chapter 7, we conclude

the findings of this thesis and we present several future directions of research.

10



CHAPTER 2

BACKGROUND AND RELATED WORK

Contents
2.1 Preliminaries . . . . . . . ... e 11
2.2 Geometric Deep Learning . . . . . . .. .. ... . 14
2.3 Graph Pooling and Simplification . . . . .. ... ... ... ... ... 24

2.1 Preliminaries

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique
in data analysis and machine learning. It is used to identify the most important features
or patterns in a dataset and transform the data into a new coordinate system called the

principal components.

The goal of PCA is to represent a high-dimensional dataset in a lower-dimensional space
while retaining as much of the original information as possible. This is achieved by finding
a set of orthogonal axes, called principal components, where the first principal components
captures the maximum variance in the data. Essentially, by projecting the data onto the
principal components, the maximum variance between them will be retained which is able

to capture most of the information of the data.

In a mathematical setting, given a dataset with N data samples [x1, X2, X3, ..., XN], each
consisting of D features, we can represent the dataset as a matrix X € RVXP. The dataset

is assumed to be centered with zero mean, or a normalization step is usually performed
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to center the dataset around the axis origin. The first step of the decomposition requires

the calculation of the covariance matrix of X:

S=Cov(X) = %XXT (2.1)

PCA aim to identify an orthogonal subspace of rank D’ << D, that maximizes the variance
in the dataset. This can be mathematically formulated as an orthogonal subspace W =
[Wo, W0, ..., Wwpr] € RPXP’ that is able to transform the data samples x; to a lower rank

projection y; = W'x;, where y; € RP".

The optimal subspace W can be identified by solving the system:

W* = argmax|[trace(W!SW)]
w

(2.2)
subject to WI'W =1
The solution of the aforemention system is given by obtaining the Lagrangian:
Lagrangian(W, 1) = WISW — A(I - WT'W) (2.3)
which results to the equation of eigenvalues of W:
SW =AW (2.4)

By selecting the appropriate number k of eigenvectors v; corresponding to the k largest
eigenvalues we are able to obtain a projection matrix W that reduces the dimensionality

of the data while maximizing their variance.

Principal Component Analysis, given its ability to effectively reduce the dimensionality of
datasets, is a widely used technique with application ranging from feature extraction and

noise reduction to 3D shape modeling.

2.1.2 Graph Definition

A graph G is defined as a set G = (V,&E, W) of a finite number of N vertices V that are
connected through the edges & € V XV and weights W. More specifically, two vertices

i,j are connected with weight w; ; € W if there is an instance (7, j) in the set of edges
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&. From the set of edges &, one can construct the adjacency matrix A € RM-V that is
filled with non-zero values if and only if two vertices i and j are connected with an edge
e;,; € &. In such case, the value a; ; = 1. If the graph is undirectional the matrix A is
symmetric. In contrast, in the case of a directional graph, a non-zero entity a; ; on the
adjacency matrix does not imply a non-zero entity a;; as well. Throughout this thesis
only undirectional graphs are considered. Each graph is also associated with a diagonal

degree matrix D, indicating the number of edges associated with each vertex.

2.1.3 Convolution

Convolution operator has been the key to success of deep learning models, achieving
state-of-the-art performance in almost every grid structured problem. One of the key
properties that contributed to its success is the preservation of the relationships between
features and patterns when the input is translated. This property is named translation
equivariance and enables convolutional layers to operate on local neighborhoods of the
input data using shared weights, allowing them to detect similar patterns regardless of
their spatial location in the input. The main idea behind convolutions is the stationarity
of data to locally repeat similar features. Leveraging the stationarity property of the
data, one can reduce the number of parameters required by using shared weights across
local regions. Given that convolutions learn spatially invariant representations, meaning
that the learned features are robust to translations or shifts in the input data, they are
extremely efficient in tasks where the location of objects or features of interest within the
input can vary, and it is important for the model to recognize them regardless of their
position. In the Euclidean setting, the convolution between two continuous functions at

point ¢ can be defined as:

(Fr8)(0) = / " F(gli - dr (2.5)

where f, g are two functions and * the convolution operator.

Similarly, in the discrete setting, convolution of a discrete point n can be defined as:

(fxg)nl= ) flmlgln—m] (2.6)

m=—oo

where f, g two discrete functions.
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In the special case of finite signals f, g, a periodical wrapping is applied, usually called
cyclic or periodic convolution. It is called ”cyclic” because it treats the input sequences
as periodic signals that repeat indefinitely. The two input sequences are assumed to be
periodic, with the period equal to their respective lengths. The resulting sequence is
also of the same length as the input sequences. This operation is usually formulated by

transforming the filter function g in Eq. 2.8, to a circulant matrix C(g) :

80 81 8 - 8m-1

8m-1 80 81 8&m-2
C(g)=|8m-2 8m-1 80 - 8&m-3 (2.7)

| 81 8 8 ' &0 |

Using the circulant matrix formulation, the convolution operator can be redefined as a

simple matrix-vector multiplication:

(fxg)=C)f (2.8)

An important derivative of circulant matrices is their commutativity property with the

shift operator. This also leads to the shift equivariance of convolution operator.

However, the notion of translation g[n — m] introduced Eq. 2.8 by shifting a point n by
m, is elusive in the case of unstructured and irregular domains. Several approaches have
attempted to redefine the operation of convolution to non-Euclidean structures under the

umbrella term of geometric deep learning.

2.2 Geometric Deep Learning

Recently, the enormous amount of applications related to data residing in non-Euclidean
domains motivated the need for the generalization of several popular deep learning op-
erations, such as convolution, to graphs and manifolds. The main efforts include the
reformulation of regular convolution operators in order to be applied on structures that
lack consistent ordering or directions, as well as the invention of pooling techniques for
graph downsampling. All relevant endeavours lie within the new research area of Geomet-
ric Deep Learning (GDL) [4].
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2.2.1 Spectral Domain

As discussed previously, in the non-Euclidean case we cannot even define the translation
operation n—m, as in Eq. 2.8, on the manifold or graph, so the notion of convolution does
not directly extend to this case. An alternative definition of convolution in the frequency

domain can arise using the diagonalization of circulant matrices.

In particular, all commuting matrices, such as circulant matrices as defined in Eq. 2.7,
can be jointly diagonalized. Such property entails that all circulant matrices share the
same eigenvectors that diagonalize them. In addition, those eigenvectors will then sim-
ultaneously give the diagonalizing transformation ® 1C(g)®, were the columns of matrix
® will be the eigenvectors of the circulant matrix. It can be easily proven using the shift
operator as a simple case of the circulant matrix that its eigenvectors correspond to the
Fourier basis. Given the joint diagonalization property of circulant matrices this can be
extended to any arbitrary circulant matrix. Thus, the convolution can be diagonalized by
the Fourier basis as:

(f*g) = ®diag(g)®'f (2.9)

where diag(@) is a diagonal matrix containing the eigenvalues of the circulant matrix C(g),
which also represent the Fourier transform of the values of C(g). The main motivation
behind the decomposition of convolution operator to the Fourier basis is the popular
Fourier transform duality, in which a convolution between two signals in the spatial domain
can be calculated using matrix multiplication in the frequency domain. Indeed, Eq. 2.9,

can be reformulated using the previous definitions to:

(f+g) = ddiag(g) ®'f
—_—
G=7(g) F=7(/)
N——

F-1(GF)

(2.10)

where ¥ represents the Fourier operator and F~! its inverse.

One of the most popular circulant matrices on discrete domains is the graph Laplacian,
given its ability to be defined on diverse structures. The Laplacian operator, for an n-
dimensional signal f : R® — R, can be defined as a combination of the intrinsic gradient

and divergence operators :
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N 0% f
Lr=Af=—div(V =§— 2.11
r=Af (V) 24 552 (2.11)
In the discrete case of graphs, the Laplacian operator quantifies how a function defined

on the graph changes with respect to its neighboring nodes:

AfGY = wiilfG) = ()] (2.12)

jEN)

where f(i) is the function f applied to node i and N, is the set of its neighbours.

This can be reformulated using the degree D and the weight matrix W:

A=D-W (2.13)

In the special case of an unweighted graph, Eq. 2.13 transforms to A = D — A, where
A is the graph adjacency matrix. However, in most cases the normalized version of the
Laplacian is being used:

Af =1, - D '2wp~1/2 (2.14)

with Iy defines the NxN identity matrix. Apart from the circulant matrix eigenvalues, one
can prove the relationship between Fourier basis and Laplacian eigenvalues using Dirilecht
energy function [4] or by expanding the classical Fourier definition for continuous functions
[28].

Similar to the circulant matrices, the Laplacian matrix A is a real symmetric positive
semi-definite matrix with a complete set of orthonormal eigenvectors {qﬁi}i’\:’ o> known as
the graph Fourier basis and their corresponding eigenvalues {/ll-}f\i o identify as frequencies
of the graph. Using the matrix of Fourier basis ® € RV*N and the diagonal matrix
A = diag(1g, A1, ..., An) € RV*N of the eigenvalues we can diagonalize the Laplacian matrix
as A = ®A®T. Using the above formulation, it follows that a signal f defined on the graph

can be filtered by a function gg on the spectral domain as:

f' =go(A)f = go(RAB") = Bgo(A)®'f (2.15)

Leveraging the definition of convolution using the Fourier basis (Eq. 2.9), Bruna et.al.[29]
defined the first non-parametric spectral convolution layer (SpectralCNIN), acting on

irregular domains as:

16



fj=0'

> @Gi,jrpri) (2.16)

where f; the features of node j, ® the eigenvectors of the graph Laplacian A, Gjj the
trainable diagonal matrix of spectral multipliers and o () a non-linearity applied vertex-
wise to the output of the convolution. To model the non-parametric filter G, the authors
utilized a cubic B-spline basis. Additionally, the authors proposed to retain only the first
k eigenvectors of the Laplacian given that they capture most of the smooth details of
the graph. However, this approach comes with several drawbacks. In particular, it is
not scalable due to the requirement of multiplying the data by the graph Fourier basis
®. While the computation cost of this matrix is not neglectable (O(N?)), the primary
bottleneck is the need to perform two multiplications (forward and inverse Fourier trans-
forms) on the data, resulting in a computational complexity of operations per forward and
backward pass. Also, since their model relies on smoothness in the Fourier domain and
uses spline parametrization to introduce localization in the vertex domain, it lacks precise
control over the local support of their kernels, which is crucial for learning filters with
specific localization. Finally, given the non-parametric form of the filter G, the number of
parameters of the layer depend linearly on the input which deviates from the design of a

shared constant number of parameters that traditional Euclidean convolution have.

Deferrard et.al.[30] proposed ChebNet, to address the limitations of SpectralCNN [29],
by applying a filter parametrisation based on polynomials of the eigenvalues of the graph

Laplacian. In particular, the authors defined the spectral filter gg(A) as:

K-1
go(A) = > 6,Ak (2.17)
k=0

where 6§ € RK a learnable vector of coefficients. The corresponding convolution can be

now defined as:
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frggo=Bgo(A)Df

f (2.18)

Using this formulation, the number of parameters of the filter are independent from the
input size and are only related to the degree of the polynomial. To tackle this, a paramet-
rization of g¢(A) as a polynomial function that can be computed recursively from the graph
Laplacian, given that K multiplications by a sparse Laplacian costs O(|&]) << O(|N?)
One such polynomial, traditionally used in Graph Signal Processing to approximate ker-
nels (like wavelets), is the Chebysev polynomial [31]. Recall that the Chebysev polynomial

T (x) of order k can be evaluated as:

T()(x) =1
Ti(x) =x (2.19)
Ty (x) = 2xTi—1(x) = T—2(x)

The convolution filter can be parametrized as truncated expansion with Chebysev polyno-
mial of order K, where 6y are learnable Chebysev coefficients. Using this parametrization,
the number of convolution parameters are independent of the size of the graph, which
enables the scalability of the operator. Furthermore, another important property of this
formulation is that the filters are localized in the spatial domain given that both the Lapla-

cian along with its powers A are local operators acting around a k-hop neighborhood.

In a following work, Kipf and Welling [32], proposed Graph Convolutional Network
(GCN) to simplify the Chebysev polynomial to a linear form, i.e. k = 2 which results to
1-hop neighborhood localized filters with only two parameters for each convolution. The

reparametrized convolutions, using the normalized Laplacian, were defined as:

fxggo=280(ANf

(2.20)
= 0of - 6, (D‘1/2WD‘1/2)f
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where 6,61 are the parameters of the convolution. By setting 68p = —6; the graph con-

volution can be further constrained to one-parameter f =g gg = 6y (]5‘1/2W]5‘1/2)f, where

W =W +Iand D = diag(3 4 Wi))-

2.2.2 Spatial Domain

Spectral approaches that aim to generalize convolutions to irregular domains, suffer from
the inherent drawback in their ability to generalize across different domains. As previously
discussed, spectral convolutions rely on the Fourier basis which is domain dependent,
meaning that if the domain slightly changes the Fourier basis will be totally different.
To enable cross domain generalization several approaches have been developed that act
directly on local charts and patches on the spatial space. As one can easily identify, both
ChebNet and GCN methods boil down to applying simple filters acting on the k-hop
neighborhood of the graph in the spatial domain. Spatial convolutions can be thought as
the analogy of a kernel applied on a patch of a Euclidean signal, by locally aggregating

information around its node. In their general form, spatial convolutions can be defined as:

(f +@)(vi) = > g;Di(v))F
J (2.21)
Di(v)f = [ Fwuty;vodv

where i, j two nodes of the graph, and f a function applied on them.

Masciet.al.introduced GeodesicCNN [5], convolution operator that leverages the intrinsic
properties of the manifold by applying filters to local patches represented using geodesic
polar coordinates. In particular, the polar coordinates of a node v; can be given using the

intrinsic distance p(v;) = dist(v;,v;) and the angular coordinate y(v;) as:

M(V,’,Vj) — e*('/’j*%”i)2/20'3/6_(/)}._”)2/20/% (2.22)
where p;,; represent the distance and the angular coordinates of node j respectively.

The idea of GeodesicCNN to utilize non-isotropic kernels extended in AnisotropicCNN
[33], by utilizing heat diffusion kernels to break the isotropic nature of the graph kernels.
The differences between kernels on a local patch of a 3D mesh can be illustrated in Figure
2.1.
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Figure 2.1: Patch kernel functions u(v;, v;) used in different generalizations of convolution
on the manifold (Figure from [4])

MoNet [34] extend the kernel operator to handle both manifolds and graphs, making it
adaptable through learning. They define each patch operator as a weighted average of
the signal from neighboring points around a central point. The weights are determined
by learnable functions that take as input the central point and one of its neighbors, and
these functions are parameterized based on a pseudo-coordinate system. To increase the
degrees of freedom of the convolution, the authors propose to learn not only the filters but
also the patch operators by using a Gaussian kernel with learnable mean and covariance

matrices: 1
u(vi,vj) = exp (—5 (vj - ui)T Ei_l (vj - ,ui) (2.23)

where yu;, 3; are the learned mean and the covariance matrices of patch i. It can be easily
seen that all of the aforementioned graph convolution operators can be expressed using the
MoNet formulation. Several follow-up works extended the notion of learned patch kernel

by using b-spline kernels [35] or by learning the pseudo-coordinate transformation [36].

Undoubtedly, a generalization of the previous methods called Graph Attention Net-
works (GAT) revolutionized the field of graph learning. GAT inspired from the attention-

based models [11], reformulated graph convolutions as message passing networks. In par-
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ticular, for every node of the graph a self-attention mechanism is applied between the node
and its neighbours:
a;; = softmax; a (F(v;),F(v;)) (2.24)

where a(-) is the self-attention mechanism and F(v;) is a learnable function over the node
i. The authors proposed to use a linear transform between the concatenated features
of the two nodes followed by a non-linearity as self-attention function: @ (F(v;),F(v;)) =

& (aT [F(v;)||F(v;)]), where || represents the concatenation operator and £(-) a non-linearity.

Following GAT, several works have been proposed to generalize machine learning to ireg-
ular domains such as graphs and manifolds [37, 38, 39] which can be generalized under

the update rule of Message Passing Neural Networks:

vi=¢£|ve (Vi,jEDMU@) (Vi,Vj,ei,j))] (2.25)
where yg(-),n0(-) are differentiable learnable functions with networks parameters ©, v;
a node of the graph and v; € N; its neighbour, e; ; the features of edge (i, j) , O denotes
a differentiable, permutation invariant function, e.g., sum, mean, min, max or mul and
£(+) a non-linearity. As shown in [40], all of the aforementioned graph convolutions can

be expressed using Eq. 2.25.

2.2.3 Geometric Deep Learning on Meshes and Point Clouds.

As discussed in the previous section, Meshes and Point Clouds can be considered as irreg-
ular domains in the context of geometric data processing. In both cases, the irregularity
arises from the lack of grid or uniform structure in the arrangement of vertices or points.
This irregularity poses challenges in processing and analyzing the data, as traditional
methods developed for regular grids or structures may not directly apply. Specialized
algorithms and techniques, such as those in the field of geometric deep learning, are often
used to handle these irregular domains and extract meaningful information from meshes

and point clouds.

Traditionally, Point cloud processing techniques handled discrete surfaces as unstructured
sets of points without inherent notions of intrinsic distances or connectivity. PointNet
[20], a groundbreaking approach, introduces a point set processing layer that employs a
1x1 convolution shared among all points, followed by batch normalization and ReLL.U ac-
tivation. The resulting local features are then aggregated using max pooling to generate
a global representation of the surface. Despite its simplicity, PointNet has demonstrated

impressive performance in 3D object classification and point cloud segmentation tasks,
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remaining competitive with more recent methods. An extension of PointNet, named
PointNet++ [22], was proposed to capture local structures of the point cloud using
a Message Passing Neural Network scheme. In contrast to PointNet, PointNet++ groups
point progressively using a so-called abstraction layer that aggregates local regions. Each
abstraction layer is composed by three components, a Sampling Layer, a Grouping Layer
and a Point Layer which sample centre points, group them with their k-neighbours and
process them using a mini-PointNet network, respectively. Using the Message Passing

Neural Network parlance of Eq. 2.25 we can define “abstraction layer” as:
v, =7ye |max he(v;,pj — pi)) (2.26)
JEN;

where p;, p; are the vertex i, j xyz—positions. The Message Passing formulation of Point-
Net++ achieved state-of-the-art performance across various Point Cloud tasks and pi-
oneered the use of geometric deep learning on Point Sets. Recently, several approaches

leveraged this formulation to enhance point learning tasks [41, 42, 43, 26].

In contrast to Point Clouds, learning on Meshes requires construction of anisotropic filters,
that leverage the underlying structure of the manifold. However, in a fixed topology setting,
such an ordering is beneficial so as to be able to keep track of the existing correspondences.
Several methods, exploited the fixed topology of a mesh to define a fixed ordering of
the vertices and refrain from using permutation invariant operators. In particular, Lim
et.al.[6] proposed to order the vertices of a neighborhood using a spiral trajectory, as shown
in Figure 2.2 In a follow-up work, Bouritsas et.al.[7], defined a Message Passing Neural
Network that uses an anisotropic soft-attention on spiral trajectories [6]. In particular,

given a vertex v; € V, the authors introduced a k-ring and a k-disk as:

0-ring(v) = v,
(k+1)-ring(v) = N ((k+1)-ring(v)) — k-disk(v), (2.27)
k-disk(v) = U i-ring(v)
i=0,....k

where N (V) is the set of all vertices adjacent to at least one vertex in the set V.

Once the k-ring is defined, the spiral trajectory centered around vertex v can be defined
as:
S(v, k) = {0-ring(v), 1-ring(v), ..., k-ring(v) } (2.28)

In order to be consistent across all vertices, the authors pad or truncate S(v, k) to a fixed
length L. To fully define the spiral ordering, the authors selected the initial vertex of

S(v, k) to be in the direction of the shortest geodesic distance between a static reference
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(a) (b)

Figure 2.2: a) The polar coordinates constructed by GeodesicCNN [5] on a local patch b)
The spiral trajectory that enumerates a fixed ordering of the neighbouring vertices of the
patch. [6, 7]

vertex. Given that all 3D faces share the same topology, spiral ordering S(v, k) will be
the same across all meshes and so, the calculation is done only once. With all the above
mentioned, Spiral Convolution can be defined using the Message Passing Neural Network

formulation as:

jeS(v,k)

vi=%Ye ( | h@(Vj)) (2.29)
where yg and hg correspond to convolution learnable parameters, such as Multi-Layer
Perceptrons (MLPs). Although both of the learnable functions could include a non-linear

activation function, a non-linearity after the aggregation function yg empirically achieved

better performance.

The fixed ordering defined by the spiral trajectories in equivalence to traditional convo-
lutions allows the use of long-studied practices in the computer vision community. For
example, small patches can be used, leading to fewer parameters and fast computation.
Furthermore, the authors showed that dilated convolutions can also be adopted in the

spiral operator by simply subsampling the spiral.
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2.3 Graph Pooling and Simplification

2.3.1 Graph Pooling

One of the components underlying the success of large-scale CNNs are pooling layers, intro-
duced to formulate training in a hierarchical manner. Until recently, graph neural network
(GNN) architectures used for tasks like classification, segmentation and generation, learn
global graph representations by relying solely on node aggregations, neglecting the char-
acteristics of local substructures. To mitigate such issues, several graph pooling layers
have been introduced for hierarchical representation learning. Initial approaches, utilized
variations of the non-trainable Graclus clustering algorithm [44, 45, 35] and Farthest Point
Sampling [22] to perform pooling operations and generate hierarchical representations of
the input node set. The first differentiable pooling layer (DiffPool) was introduced by [46]
that learns a soft assignment matrix to perform node clustering. However, the clustering
assignment matrix requires quadratic storage complexity and it is not scalable to large
scale graphs [47]. To address the limitations of DiffPool several Top-K selection methods
have been proposed, that select the top ranking nodes according to a learnable projection
score [48, 47]. In order to enrich the projection score with local graph structure, SAGPool
[49] utilized a GNN layer to assign self-attention scores to each node. However, Top-K ap-
proaches retain only a subset of the edge set of the input graph, leading to isolated nodes.
Ranjan et al., [50] introduced ASAPooling, an extension to Top-k pooling schemes that
performs node aggregation to address the edge connectivity limitations of the previous
methods. Recently, a motif based pooling was introduced [51] that applied selection and

clustering pooling techniques on the graph that was partitioned into small motifs.

2.3.2 Mesh Simplification

Mesh Simplification is a well studied field with long history of research. Traditional sim-
plification algorithms repeatedly decimate the input mesh according to a cost function to
preserve its rendered appearance, until the desired simplification ratio is reached. In an
abstract sense, one may regard mesh simplification as a pooling process, since the input
topology is given and its simplified version is unknown. However, in contrast to common
graph pooling architectures, mesh simplification methods should also respect the surface
properties of the mesh, such as smoothness and manifoldness. A natural approach to by-
pass the limitations is to attempt to bridge both words, as it will be described in Chapter
5 and Chapter 6.
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Simplification methods can be distinguished in two major categories: wertezx clustering/-
decimation and edge collapse methods. Vertex decimation methods rank vertices accord-
ing to a heuristic geometric cost function, such as their distance from the average plane
[52, 53, 54], to ensure that least important vertices will be decimated first. However, al-
though it is considerably more interpretable technique, a re-tessellation of the generated
holes is required after each vertex deletion, making such algorithms impractical. On the
other hand, edge collapse methods preserve the input topology by sequentially contract-
ing pairs of vertices (i.e. edges). Hoppe et.al[55, 56] pioneered an energy cost function
defined over the edges that is attempted to be minimized in every contraction step. Fol-
lowing this idea, in the seminal works of [57, 58], each vertex was associated with the set
of planes in its 1-ring neighborhood and was expressed by a fundamental quadric matrix.
The authors showcased, that using the quadric matrix, the distance of a point from a set
of planes can be expressed using the sum of their quadrics, which is known as Quadric
Error Metric (QEM). Using this property, edges that introduce the minimum point-to-
plane distance were the first to be collapsed. Several approaches have built upon QEM
to incorporate texture [59, 60], curvature [61, 62, 63, 64], mesh saliency [65, 66, 67], spec-
tral properties [68, 69], boundary constrains [60] or to speed-up the process using parallel
processing [70, 71]. In [72] it was observed that greedy simplification methods lead to
sub-optimal meshes and attempted to tackle mesh simplification as a global optimization
problem using shape proxies. In particular, the authors introduced a normal deviation
error metric to partition the input mesh to non-overlapping connected regions and then
fit plane approximations (shape proxies) to each partition. Although the process produces
more accurate shape approximations of the input, the method is not particularly efficient.
Recently, Hanocka et.al.[73] proposed the utilization of an adaptive greedy edge collapse
method as a learnable pooling strategy, where edge weights are learned through the net-
work. However, apart from the inefficient greedy nature of the edge collapse methods, the
resulting mesh faces can only be decimated approximately by a factor of two and thus

limiting its applicability.
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CHAPTER 3

STATIC NEURAL DEFORMABLE MODELS:
THE CASE OF HAND MODEL
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VER the last few years, with the advent of virtual and augmented reality, an

enormous amount of research has been focused on modeling, tracking and recon-

structing human hands. Given their power to express human behavior, hands
have been a very important, but a challenging component of the human body. Currently,
most of the state-of-the-art reconstruction and pose estimation methods rely on the low
polygon MANO model [2]. Apart from its low polygon count, MANO model was trained
with only 31 adult subjects, which not only limits its expressive power but also imposes un-
necessary shape reconstruction constraints on pose estimation methods. Moreover, hand
appearance remains almost unexplored and neglected from the majority of hand recon-
struction methods. In this chapter, a large-scale model of the human hand is introduced
and proposed, named “Handy++"”, which models both shape and appearance composed
of more than 1200 subjects. The model is made publicly available for the benefit of the
research community. In contrast to traditional models that are based on smooth PCA
decomposition, the proposed model utilizes a mesh convolution operator that acts dir-
ectly on the mesh space and learns hierarchical representations. In this way, semantically
meaningful representations can be learned and the number of parameters can be consid-

erably reduced. Additionally, the proposed hand model was trained on a dataset with
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large diversity in age, gender, and ethnicity, which tackles the limitations of MANO and
accurately reconstructs out-of-distribution samples. In order to create a high quality tex-
ture model, a powerful GAN is utilized, which preserves high frequency details and is able
to generate high resolution hand textures. To showcase the capabilities of the proposed
model, a synthetic dataset of textured hands was built and a hand pose estimation net-
work was trained to reconstruct both the shape and appearance from single images. As it
is demonstrated in an extensive series of quantitative as well as qualitative experiments,
the proposed model proves to outperform the state-of-the-art and realistically captures
the 3D hand shape and pose along with a high frequency detailed texture even in adverse

“in-the-wild” conditions.

Figure 3.1: Our proposed hand model is able to generalise and accurately reconstruct the
3D hand shape and appearance from a single in-the-wild image. High frequency details
are visible in the reconstructions such as wrinkles, veins, nail polish etc.

3.1 Introduction

Humans express their emotions mainly using their facial expressions and hands. Hand
movements and poses are strong indicators of body language and can convey meaningful
messages which can be key factors in human behavioral analysis. For this, hands have
been widely studied in regard to their biometric applications [74, 75]. 3D hand models
lead the technological developments of crucial tasks for virtual reality such as human hand
tracking [76, 77, 78, 79] and pose estimation [80, 1]. Specifically, hand pose estimation
algorithms utilize these models in order to reconstruct a subject’s hand from a monocular
depth or RGB image. However, most of the current state-of-the-art methods on 3D hand
reconstruction and pose estimation rely on low polygon models, with minimum diversity

in terms of age, gender, and ethnicity and without any hand texture appearance [2].

In particular, MANO [2] is considered the most popular hand model, which pioneered the

construction of a parametric human hand model. Apart from its low polygon resolution

28



(778 vertices), it is composed by just 31 subjects, which limits the accuracy of high fidelity
3D reconstruction models. A statistical model with such a low number of samples will
always constrain the reconstruction of hand shapes of diverse age and ethnicity groups.
In the same context, despite the efforts of implementing strong pose priors to accurately
constrain parametric models on valid hand poses [81], reconstruction methods are still
dependent on a limited shape model. Importantly, current parametric models are con-
structed only by adults’ hand shapes in the age range of 20-60 years old, disregarding
the shape variations out of this age range. Experimental evidence shows that there is a
significant difference in shape between children’s and adults’ hands. This difference makes

current shape models more prone to reconstruction errors for arbitrary age gropus.

Additional to the shape component, a major limitation of current hand models is the ab-
sence of a high resolution texture model. Despite the necessity in virtual and augmented
reality for a personalized appearance reconstruction, there are only a few studies that at-
tempted to model hand texture along with shape and pose. In particular, current methods
on hand texture reconstruction from monocular images are constrained on limited demo-
graphic variations and low resolution textures that are ill-suited for real-world applications
[82, 83, 84, 8, 85]. Recently, HTML [8] proposed the largest available parametric texture
model of the human hand composed of 51 subjects. Given that the texture component
is based on Principal Component Analysis (PCA) of low resolution UV texture maps,
the generated textures tend to be blurry, lacking the high frequency details of the hand.
Low resolution textures not only limit the fidelity of RGB reconstructions but also the
generations of realistic synthetic data. Currently, state-of-the-art hand-object detection
methods [86, 87, 88] train their models on synthetic datasets with low resolution textures
such as HTML or vertex colors, which subsequently constrain the quality of the resulting

reconstructions.

In this study, the first large-scale parametric shape and texture hand model is proposed,
named “Handy”, composed of over 1200 subjects. Given these high resolution textured
scans with large demographic, gender, and age variations, a high resolution hand model
was built, which overcomes the shape limitations of previous state-of-the-art models. This

is the first hand model that captures subjects with ages from 1 to 81 years old.

The scans come with high resolution textures which enable the creation of a highly detailed
texture model. In contrast to HTML [8], a high resolution texture model was built, using
a style-based GAN which allows the modeling of high frequency details of the human hand
(e.g., wrinkles, veins, nail polish). Under a series of experiments, the proposed parametric
model overcomes the limitations of previous methods and presents the first high fidelity

texture reconstruction method from single “in-the-wild” images.
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Besides the success of 3D hand reconstruction from monocular depth and RGB images,
there are currently only a few methods that are able to reconstruct the pose along with the
shape and texture components. Existing 3D hand datasets only contain hand annotations
in terms of pose and global rotation and they usually neglect hand shape variations by
modeling only a mean hand shape. Additionally, the lack of ground-truth high resolution
texture maps limits current hand reconstruction methods to properly predict the appear-
ance of a given hand. In order to enable texture modeling, the approach taken in this
work follows the trend of synthetic data generation. A large-scale dataset was built, that
encompasses annotations in terms of pose, shape, and texture information. In summary,

the contributions of this Chapter are the following;:

o A large-scale shape and appearance model of the human hand, built using over 1200
3D hand scans with a wide diversity in terms of age, gender, and ethnicity, which is

made publicly available for the benefit of the research community.

e A synthetic dataset is created for monocular 3D hand reconstruction, utilizing the
high fidelity hand model developed in this work. This dataset is made publicly avail-
able. As demonstrated in the experimental section, the synthetic dataset improves

the performance of off-the-shelf reconstruction methods.

e A high fidelity appearance reconstruction method that is capable of reconstructing
high frequency details such as wrinkles, veins, nail polish, and so on, from monocular

images.

3.2 Related work

Parametric Hand Models

Over the years, several hand models have been proposed in the literature to approximate
hand articulations. Initially, Oikonomidis et.al.[89] attempted to model hand shape as a
collection of geometric primitives such as elliptic cylinders, ellipsoids, spheres, and cones.
In the sequel [89], various approaches were proposed to model hand joints using anisotropic
Gaussians [90], a collection of spherical meshes [91], or a union of convex bodies [92].
Schmidt et.al.[93] proposed the first implicit representation of the articulated hand using
the popular Signed Distance Function. Khamis et.al.[94] proposed the first linear blend
skinning (LBS) model constructed from 50 subject scans. The authors modeled hand

poses and shape variations using a low dimensional PCA. To tackle the volume loss and
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restrict unrealistic poses of the LBS, Romero et.al.[2] learned pose dependent corrective
blend shapes from the scans of 31 subjects and proposed the MANO parametric model. Li
et.al.[95] proposed the NIMBLE to model the interior of the hand, i.e. bones and muscles.
Recently, HTML [8] attempted to create a parametric appearance model of the human
hand by collecting hand textures from 50 subjects. However, given the limited amount
of data, the authors train a PCA model on the UV space that results in low resolution
textures. To address the aforementioned limitations, the present work proposes the first
large-scale model of both hand shape and appearance of the human hand, composed of

over 1200 scans.

Hand pose estimation

3D hand pose estimation has been a long studied field, originally tackled by deforming
a hand model to volumetric [96] and depth images [97, 98, 99, 100]. Initially, 3D pose
estimation was considered as a fitting problem where a 3D parametric model was used to
fit 2D keypoints [101, 102]. De La Groce et.al.[83] pioneered hand pose tracking from single
RGB images by solving an optimization problem. The advent of deep learning methods
has shifted the research interest to sparse joint keypoints prediction from RGB images
using CNNs [103, 80, 104, 102]. Most of these methods attempt to directly predict dense
3D hand positions by regressing the MANO model [2] parameters [87, 105, 106], which
constrain them to the shape and pose space of MANO. Several methods try to deviate from
MANQO’s parameter space, by directly regressing 3D vertex positions using graph neural
networks [107, 108, 109]. Hasson et.al.[88] proposed a CNN-based method that regresses
MANO and AtlasNet [110] parameters to reconstruct 3D hand poses together with various
object shapes. Recently, a handful of methods attempted to reconstruct objects along
with hands by using implicit [111, 112], parametric [113, 114, 86] or a combination of both

representations [115].

Synthetic datasets for hand pose estimation

Synthetic datasets have been proven very effective, boosting training performance and
overcoming data limitations in many applications, ranging from face reconstruction [116]
to pedestrian detection [117]. Numerous amount of hand pose methods have been trained
using synthetic data generated under different hand poses and illumination environments
[103, 87, 118, 107, 86]. Hasson et.al.[88] rendered synthetic data using the SMLP model
[119] under various hand poses from the Grasplt dataset [120]. Apart from the hands,

the authors used objects from ShapeNet to generate a dataset of hand-object interactions.
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However, all of the aforementioned studies are limited to only a few texture variations [103]
or low resolution hand textures [84, 87, 88, 86], creating a domain gap between synthetic
and real-world images. To address the domain gap, in this work a new dataset is created
and proposed that consists both hands and objects. Similar to [88], the created dataset
utilizes high-resolution textures of hands, taking a step towards a photorealistic synthetic
hand dataset.

3.3 Handy++: Shape and Appearance Model

This section introduces the 3D dataset that was collected to build the high fidelity shape
and texture model. Then, the process of bringing the entire hand dataset into dense
correspondence and creating the large-scale shape model is described. Finally, the training
of a style-based appearance model that preserves all the high frequency details of the

human hand is detailed.

3.3.1 Large-scale 3D hand dataset

The large-scale 3D hand dataset used in this work was collected during a special exhibition
at the Science Museum, London. A 3dMD structured light stereo system with 4 cameras
was used to capture the hand data, producing high quality dense meshes. The raw scans
have a resolution of approximately 30,000 vertices. A total of 1208 distinct subjects were
captured, with available metadata including gender (53% male, 47% female), age (1 — 81
years old), height (80 — 210 cm), and ethnicity (82% White, 9% Asian, 7% Mixed and 2%

black), as shown in Figure 3.2.

Ages Height Ethnicity

Black

Mixed

(8,15]
(100, 140]

Asian

19%

(15,25] C11%
(140,175)
35% (0,8] 4%

(45, 81]

(0,100]

(180, 220)
29%

(25,45] (175, 180]

Figure 3.2: Distribution of demographic characteristics of the scanned subjects. The
collected hand dataset covers a large variety of ages, heights, and ethnicities.
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Most notably, the collected hand scans exhibit a large diversity in terms of age, ethnicity,
and height, which provide a step towards a universal hand model. Compared to previous
methods [2, 8], the scans collected include over 360 children aged less than 12 years old and
100 elderly subjects aged over 60 years old. In order to capture different pose variations,
each subject was instructed to perform a range of hand movements according to a specific
protocol each day for a period of 101 days. In particular, each subject was instructed to
start from the open palm pose (canonical pose) and deform his hand according to several
common poses and signs for 10 seconds, resulting in around 300 frames per subject. Each
day a different pose protocol was utilized. Some example images can be seen in Figure
3.16. In this section, only the scans corresponding to the open palm pose utilized in order
to construct a large scale hand shape model. Several samples of the collected dataset are
illustrated in Figure 3.3.

Figure 3.3: Samples of different subjects under different poses on the collected dataset.
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3.3.2 Raw data dense registration

To create a statistical shape model of the human hand, a set of 3D scans was rigidly
aligned with a common template mesh. Two different resolution templates were used for
this method. As a low polygon resolution template, the MANO template was utilized
composed by 778 vertices, which can be directly adapted to the SMPL model [119]. For
high quality hand modeling, a high resolution, in terms of polygons, hand template was
utilized, comprising of 8407 vertices. The hand template was carefully designed by a
graphics artist in order to include anatomical details of the hand such as veins and nails.

A comparison between the MANO and the proposed template is shown in Figure 3.4.

MANO HANDY

HANDY

Figure 3.4: Samples of different subjects under different poses on the collected dataset.

To bring the raw scans into dense correspondence a five-step pipeline was used. Initially,
the scans were rendered from multiple views and 2D joint locations were detected using
MediaPipe framework [79]. Subsequently, the 2D joint locations were lifted to 3D by
utilizing a linear triangulation and then the fingertips were detected using the projection
of the finger skeleton to the tips of the surface. Using the 3D detected skeleton, a fitting
process was performed by optimizing the pose parameters of a Linear Blend Skinning
model (LBS) to align the template hand to the exact pose and shape of the raw scan. As

an intermediate step of the raw scan registration, MANO [2] was used as an LBS model
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to optimize pose 6 and shape 8 parameters using following loss function:
L=Ly+ Leot +11Bll2 + 116112 (3.1)

where £y = ||J - J||2 is a landmark loss that enforces MANO joints J to match the
detected joints J and Leor = ||lui — u jll2 is a collision loss that applied to vertices v;,v;
that penetrate the surface and enforces them to be in contact. To find the points that
penetrate the surface we use the Winding Numbers algorithm. The optimization process

was performed using Adam optimizer with learning rate of le — 3.

To obtain the fittings of the high resolution template, a manual mapping between the
barycentric coordinates of the MANO and the high resolution Handy template was defined
that was utilized to transfer the fitted MANO hand to the Handy template.

To acquire the hand dense registrations, Non-rigid Iterative Closest Point algorithm (NICP)
[121] was applied between the fitted hand template mesh and the 3D raw scans. Finally, in
order to avoid capturing any unnecessary deformations into the final shape model, a nor-
malization step was performed that reposes registered hands to the canonical open-palm

pose.

3.3.3 Handy: A PCA approach

As a baseline model, a deformable hand shape model described as a linear basis of shapes,
was used. In particular, using PCA, a hand model was build with N vertices that is
described by an orthonormal basis, after keeping the first n, principal components U €
R3N*%e and their associated A eigenvalues. This enabled the generation of hand instances

by regressing the shape parameters 8 = [Bo, 51, ..., Bn.] € R" as:

By(B) =T+ Z UiB; e R*N (3.2)
i=0

where T € R3V refers to the mean hand shape. Variations of the first 5 shape components

are illustrated in Figure 3.5.
Finally, the articulated hand model can be defined as:
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Figure 3.5: Mean shape T and the first five principal components, each visualized as
additions and subtractions of 3 standard deviations (£30") away from the mean shape.

Typ(B.0) = Bs(B) + B (6) (3.4)

where W(-) corresponds to a linear blend skinning function (LBS) that is applied to the
articulated hand mesh with posed shape T,,, W, J define the blend weights and kin-
ematic tree of joint locations, respectively, and B, @, are the shape and pose parameters,
respectively. To tackle the joint collapse of typical LBS function, the MANO learned pose

corrective blendshapes P [2] were used to produce more realistic posed hands:

9K
By(60) = > (Ri(6) - Ri(67) P; (3.5)
i=0

where P; are the pose blend shapes, K is the number of joints of the hand model, R;() is
a function that maps pose parameters 8 to the rotation matrix of joint i and 8* refers to

the canonical pose.

3.3.4 Handy++: a neural deformable hand model

Traditional shape modeling using a linear PCA is usually constrained given its limitation

to learn high frequency details using compact representations. In this section, a neural
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autoencoder is proposed to extend the “Handy” model. As shown in the literature, neural
networks that utilize the structure of autoencoders can accurately model 3D faces and learn
non-linear representations [122, 7]. Additionally, apart from the reconstruction quality,
non linear neural-based methods have shown an extreme capability in learning up to 50%
more compact representations compared to linear PCA models. The proposed neural
deformable model utilizes spiral mesh convolutions as a building block to model hand
shapes. As explained and discussed in Chapter 2, spiral mesh convolution, an ordering
based graph neural network for fixed topology meshes, manages to achieve state-of-the-
art performance by enforcing an explicit ordering of the neighbours of each vertex. Such
ordering allows a “1-1” mapping between the neighbours and the parameters of a learnable
local filter, similar to traditional convolution operator in Euclidean grids. Figure 3.6 shows

an example of a spiral trajectory for a random vertex in the hand palm.
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Figure 3.6: Example of a spiral trajectory around a vertex in the palm of the hand, that
defines the ordering of its neighbors.

In essence, “Handy++" is a deep convolutional mesh autoencoder, that learns hierarch-
ical representations of a shape. An illustration of the architecture is shown in Figure 3.7.
Leveraging the connectivity of the graph with spiral convolutional filters, local processing
of each shape is enabled. Furthermore, to enable hierarchical learning and allow learning
in multiple scales, several pooling and unpooling layers are utilized similar to [122]. Both
pooling and un-pooling operators are pre-defined sparse matrices obtained from quadric
mesh simplification algorithm. The unpooling operators are based on sparse matrix mul-
tiplications with upsampling matrices Q,, € {0, 1}"™, where m > n. Since upsampling
operation changes the topology of the mesh, and in order to retain the face structure,

upsampling matrices Q,, are defined on the basis of down-sampling matrices. To achieve
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this, barycentric coordinates of the vertices that were discarded during downsampling pro-
cedure are stored and used as the new vertex coordinates of the upsampling matrices. This
way, semantically meaningful representations can be learned while at the same time the
number of parameters are considerably reduced. “Handy++" was trained using L loss
on the reconstructed hand meshes. The exact implementation details of the “Handy++"

network architecture can be found in Table 3.1.
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Figure 3.7: Overview of “Handy++4", the proposed spiral autoencoder architecture.

Table 3.1: Implementation details of the “Handy++" architecture.

Encoder Module Decoder Module

Layer Input Dimension Output Dimension Layer Input Dimension Output Dimension
Convolution 28431x3 28431x8 Fully Connected 8 46x64
Downsampling 28431x8 5687x8 Upsampling 46x64 228x64
Convolution 5687x8 5687x16 Convolution 228x64 228x32
Downsampling 5687x16 1138x16 Upsampling 228x32 1138x32
Convolution 1138x16 1138x32 Convolution 1138x32 1138x16
Downsampling 1138x32 228x32 Upsampling 1138x16 5687x16
Convolution 228x32 228x64 Convolution 5687x16 5687x8
Downsampling 228x64 46x64 Upsampling 5687x8 28431x8
Fully Connected 46x64 8 Convolution 28431x8 28431x3

3.3.5 High resolution appearance model

As also shown in HTML [8], in order to train a texture model, the hand scans need to
be brought into correspondence. To achieve this optimally, a graphics artist designed a
UV hand template and used it as a reference template to unwrap the scans. However,
the hand scans were acquired using constrained light conditions with baked shadows. As
a result, before carrying out any training procedure, a pre-processing step need to be
followed on the UV textures to remove the shading and illumination. In particular, PCA
was applied to the UV textures in order to identify the components that mostly describe
the shading factors. Then, those components were subtracted from each texture UV map
to remove their unnecessary shading. Finally, an image processing step took place to map
hand textures to more natural colors, which entailed increasing the brightness, gamma

correction, and slightly adjusting the hue value.

For the training process, rather than modeling the appearance space in a low frequency
PCA domain as other methods do [8], a powerful GAN architecture, namely StyleGAN

38



[123], was utilized to model the hand textures. Given the limited number of collected
data, a smaller learning rate of 0.001 was used along with a regularization weight y of 50
that further assisted in the “Fréchet Inception Distance” (FID) [124] score as well as the
visual quality of the final results. In Figure 3.8, some random generations of the proposed
high fidelity appearance model are illustrated. By utilizing the GAN architecture, high
frequency skin details are preserved while avoiding the smoothness that may be introduced
by the PCA model. Qualitative results of the proposed texture reconstruction in Figures

3.1 and 3.13 can validate this premise.

Figure 3.8: Generated high quality texture UV maps from the proposed GAN appearance
model.

Interpolation on the latent space of the Texture Model: Apart from the high
quality of the generated hand textures, a very handful property of the styleGAN is the
smooth transitions of the latent space of the proposed texture model. To showcase the
interpolation capabilities of the proposed style-based GAN model utilized to model the
hand textures, an interpolation experiment was conducted. In particular, random pairs
of UV maps were selected, projected to the latent space of the texture GAN and then
interpolation was performed to their latent values. Figure 3.9 shows that the texture model
produces meaningful latent representations between the two UV maps. Additionally, the
generated UV maps are realistic having also very smooth transitions from the source to

the target UV maps.
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Figure 3.9: Interpolation on the latent space of the proposed texture model.

3.4 Experiments

3.4.1 Intrinsic Evaluation of Proposed Hand Model

In this Section, an initial evaluation is performed contrasting the proposed Handy++ hand
shape model, against with the commonly used MANO model [2] and the PCA baseline
Handy. Following common practice, comparison of the three models is performed in terms
of generalization and specificity. For a fair comparison, the principal components of the
PCA models are contrasted with the latent parameters of the “Handy++” model. In
addition, to showcase the superiority of the proposed large scale dataset compared to the
30-subjects dataset used to train MANQO, the compactness of the two PCA models is also
reported. The three models were tested on the test split of the MANO dataset. To fairly
compare the two PCA models, Handy and MANO, a variation of the Handy that utilizes
the MANO template as described in Section 3.3.2, is also reported. Note that only the
first 10 out of 31 principal components of MANO are publicly available.

Compactness. In Figure 3.11 | the compactness of the two models is reported. Compact-
ness refers to the percentage of variance in the training dataset explained by the model for
a given number of retained principal components. The figure shows that Handy model,

trained on the proposed large scale dataset, better explains the variations in the dataset,
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Figure 3.10: Evaluation of generalization and specificity against Handy and MANO mod-
els. The number of latent parameters refer to the number of principal components retained
for the PCA models (Handy and MANO) or to the latent space size of Handy++.
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Figure 3.11: Evaluation of compactness between Handy and MANO models.

reaching the threshold of 90% variance from the 5th component, compared to the MANO

model which reaches 90% variance at the 9th component.

Generalization demonstrates the ability of the model to generate new hand instances that
were not present in the training set. To evaluate the models in terms of generalization, the
MANO test set is utilized. In particular, the generalization error is measured as the mean
per-vertex distance of each mesh on the MANO test set and its corresponding model re-

projection. Figure 3.10 (left) reveals that the proposed “Handy-++" model achieves better
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out-of-distribution generalization and lower standard deviation compared to PCA models,
MANO and Handy. More specifically, “Handy++" achieves a generalisation error lower
than 2mm using a latent size lower than 10, compared to MANO that fails to generate
novel hand shapes and has a 3.7mm error using 10 components. This highlights the
argument that the mesh convolution autoencoder can attain more diverse samples using

more compact representations.

Specificity. Finally, the specificity error is reported, which measures the realism of the
generated hand shapes and their similarity to the training samples. The specificity error
can be described as the distance of a generated sample from the model with its closest
sample on the dataset. In practice, to measure the specificity error, 1,000 hand shapes
were generated from each model and the per-vertex distance from the closest sample in the
ground-truth datasets was measured. Similar to [125], given the small amount of training
data we measure specificity on the training set. For a fair comparison, the samples used to
train each model serve as ground-truth shapes. Figure 3.10 (right) shows that the proposed
method Handy++ results into less specificity error compared to the MANO model by
approximately 3.5mm. Furthermore, the proposed graph based autoencoder outperforms
PCA-based Handy, by 1mm while at the same time it achieves lower deviation. Note that
the slight deviation between the Handy and the Handy w/MANO models is attributed
by the high resolution (8704 vertices) of the proposed hand template which leads to more
detailed shapes compared to the MANO template (778 vertices).

3.4.2 Reconstruction of children’s hands

A major limitation of current state-of-the-art hand models is that they were trained using
limited data from specific age groups that do not reflect real hand variations. Given that
the anatomy of children’s hand is completely different compared to adult hand, current
hand models fail to accurately reconstruct them. In this experiment, the case of recon-
structing children’s hand below the age of 12 was examined. Using 20 children hands
that were not present in the training set, a fitting process was performed for each of the
models. Table 3.2 highlights the reconstruction capabilities of the proposed hand model
that was built with 1208 subjects with diverse age groups compared to the commonly
used MANO model, which is composed of only 31 adult hands. Figure 3.12 shows the
color-coded per vertex error which validates the superiority of the proposed model in chil-
dren’s hands reconstructions. As expected, MANO model fails to properly reconstruct the
main anatomical difference between adults’ and children’s hands, which mostly lies on the
back of the hand. Comparing the proposed Handy++ with Handy, it can be easily seen

that Handy++ manages to attain almost half of the reconstruction error using the same
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Table 3.2: Per vertex reconstruction error on 20 children’s hands in mm (12 of them are
less than 8 years old). We also report the performance of Handy with the MANO template
(w/MANO) and use a different number of components (n.) and latent codes (n;) for a
fair comparison. Bold denotes the best performance.

Age <8 Age <12

MANO [2] 0.78 0.77
Handy w/ MANO (n. = 10) 0.48 0.44
Handy w/ MANO (n. = 30) 0.28 0.25
Handy (n. = 10) 0.44 0.42
Handy (n. = 30) 0.24 0.21
Handy++ (n; = 8) 0.20 0.19
Handy++ (n, = 30) 0.12 0.12

latent space size. Although more latent components could lead to even better results for
“Handy++", as shown in Figure 3.10, a latent space of 8 components was used to show-
case the superiority of “Handy++" using such a compact latent representation. Visually,

as seen in Figure 3.12, this formulates to a small error, in almost all parts of the hand.

Handy w/ MANO Handy w/ MANO
10

ne = ne =30

Figure 3.12: Color coded average reconstruction error of children’s hands. The latent size
of Handy++ is denoted by n, whereas n. corresponds to the components of the PCA
models.
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Image Handy-Shape ~ Handy-GAN Handy-PCA

Figure 3.13: Hand shape and appearance reconstructions from single “in-the-wild” images.
From left to right: i) “in-the-wild” image, ii) Handy-Shape reconstruction, iii) Handy-GAN
result, iv) Handy-PCA model, and v) the HTML [8] texture on top of the shape mesh
reconstructed using Handy++.
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3.4.3 3D Reconstruction from single images

Following the pathway of many hand pose estimation methods, a synthetic dataset was
created to train the hand reconstruction model. In particular, 30,000 texture images
were generated from the GAN model to curate a synthetic dataset with textured hands.
To increase the realism of the synthetic data, similar to [88], hands were rendered while
interacting with objects of the ShapeNet dataset. The hands were also stitched to the
SMPL body model using random shapes. In contrast to the Obman dataset [88], high
resolution hand textures were used to bridge the domain gap between synthetic and "in-
the-wild” hand images. To increase the diversity of the synthetic renderings, several
illuminations, lighting, and camera configurations were used. In total, 90.000 synthetic
images were created to trained the proposed regression model. Samples of the generated

synthetic dataset are illustrated in Figure 3.14.

Figure 3.14: Samples of the synthetic dataset.

In order to leverage the latent space of the proposed Handy++ model, an off-the-shelf
method [87, 88, 126] was modified by substituting the MANO parametric model with
Handy++. For comparison reasons, Handy and MANO models were also used as a shape
decoders. Unlike previous methods that neglect the texture reconstruction, two extra
branches were added to regress the latent space w of the texture model and the camera

configuration (s,t). The network was trained using a set of loss functions that enable
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accurate hand pose, shape, and appearance estimation. In particular, similar to [87, 88, 1],
a loss was applied on both the latent shape and pose parameters and the generated 3D

vertex positions to enforce shape and pose estimation:

Lp=B-Bl2s Lo=10-8]s

L3p = Z Ivi = Vill2 (3.6)

where B,6,v denote the predicted shape, pose and vertex positions, respectively, and

i3, 6,¥ their corresponding ground-truth values.

To precisely generate hand textures, a combination of loss functions was used. Given that
the synthetic data were rendered using known ground-truth UV maps, the model was
directly enforced to produce textures that match the ground-truth UV maps with a UV
loss:

L = UVE - UV|ly (3.7)

where UVY corresponds to the generated UV texture and UV to the ground-truth texture.

Additionally, a differentiable renderer was used using an orthographic camera with train-
able parameters that projects the generated 3D hand on the input image plane. A pixel
loss between the rendered image and the input image was utilized in order to obtain

accurate camera parameters and model the details of the appearance:
Lpix = 11" =l (3.8)
with IR, I° the original and the rendered images, respectively.

Finally, to constrain the generated hand textures, a perceptual loss [127] was applied that

imposes the texture model to produce realistic textures that match the input image:
Lipips = FUR 1) (3.9)
The overall loss can be then defined as follows:

L=2L3p+01L,, +0.1Lyix +0.01Lpips +10Ls +10Ly (3.10)

Although synthetic data can be sufficient to train a hand pose and appearance estimation
network, they usually constrain the texture regressor to latent codes that lie within the
distribution of the textures, failing to reconstruct more challenging textures. In order to

boost high fidelity appearance reconstruction, a set of “in-the-wild” images was collected

46



and their corresponding Handy pose, shape and texture parameters were predicted using
the pre-trained regression network. Then, similar to [128], only the texture parameters
w were further optimized in order to generate high resolution textures that match the
appearance of the “in-the-wild” images. The optimization function is constructed with
Eq. 3.8, 3.10, along with a Lo regularization on w to secure that it does not greatly
deviate from the initial estimation. Once the improved w’ were acquired, a fine-tuning

process of the regression network on the “in-the-wild” dataset was performed.

Implementation Details:

The 3D reconstruction method from single images is composed by three main components.
The first module is a ResNet50 network, pretrained on ImageNet, that acts as a feature
extractor. Following that, a set of regression branches that predict the latent parameters
of the Handy model. In the case of Handy this translates to shape, pose and texture
parameters whereas in the case of Handy++ model, the regression branches regresses only
the decoder latent space along with the texture parameters. Finally, the last module of
the proposed method predicts the parameters (scale and translation) of an orthographic
camera that is used to render the predicted hand mesh back to the image space. All
of the aforementioned branches are composed by an MLP layer and take as input the
latent features of ResNet. The full architecture is depicted in Figure 3.15. The proposed

architecture is trained for 250 epochs with the Adam optimizer and a learning rate of 5e-5.

Hand Model

—
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) ResNet ]

Texture Model

—
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' Renderer
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Camera

Parameters
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Translation

Figure 3.15: Architecture of the proposed 3d hand reconstruction method. The ResNet
latent features are processed by three parallel regression methods, i.e. hand shape/pose
regressor with parameters z, texture regressor with parameters w and the camera regressor
predicting camera parameters.

Reconstruction under controlled Conditions:
To quantitatively assess the texture reconstruction of the proposed method, images from
the scanning device were utilized. In such case, the corresponding UV maps of each subject

acquired after the registration step can act as ground-truth UV textures. As it can be
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Table 3.3: Quantitative comparison between the texture reconstruction models under
controlled conditions.

Method L1 (x1072) LPIPS [127]
HTML 2.14 0.092
Handy-PCA 1.44 0.065
Handy-GAN 0.47 0.010

observed from the figures reported in Table 3.3, the proposed texture model outperforms
the HTML model by a significant margin, in terms of L; and LPIPS losses. The superiority
of the proposed method can be also validated in Figure 3.16. To properly compare the
texture reconstruction of each method, all three methods share the same shape and pose
extracted from the proposed regression network. The proposed method can reconstruct
high frequency details of the input image such as wrinkles, rings, tattoos, and nail polish.
In contrast, PCA-based methods produce smooth results that lack high frequency details

and even fail to properly reconstruct the skin color (Figure 3.16, row 2).

Reconstruction from “in-the-wild” images:

Furthermore, the proposed method was qualitatively compared against the HTML method
in an unconstrained setting using “in-the-wild” images. In Figure 3.13, a comparison
between the three methods is depicted, using challenging figures with different skin col-
ors, shape structures, and light conditions. Similar to the previous experiment, all three
methods share the same shape and pose. As can be easily observed, Handy-GAN can
reconstruct high frequency details such as wrinkles and precise hand colors, even with
hands that are out of the trained distribution. It is also important to note that Handy-
GAN can also reconstruct textures from hands with vitiligo disorder that have severe color

discontinuities.

Finally, to quantitatively evaluate shape and pose reconstruction under “in-the-wild” con-
ditions, the proposed model was compared with several state-of-the-art models along with
the PCA alternatives on the popular benchmark dataset FreiHand [1]. Table 3.4 shows that
the proposed method outperforms current state-of-the-art model-based methods utilizing
MANO as their backbone. It is also important to note that, as expected, the proposed
method trained on the proposed synthetic dataset (w/Synthetic), achieves better hand re-
constructions compared to the method trained with the Obman dataset [88] (w/Obman).
This finding highlights and validates the assumptions that the proposed synthetic dataset
bridges the domain gap between synthetic and “in-the-wild” images. Finally, it is worth
mentioning that although the PCA-based Handy achieves remarkable results compared to
MANO model, it can not compete the neural mesh autoencoder Handy++ which is able

to achieve even 1.4mm less reconstruction error. Qualitative results of the proposed hand
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Handy-GAN Handy-PCA

Figure 3.16: Hand shape and appearance reconstructions from single images under con-
trolled conditions.

reconstruction are shown in Figure 3.17.
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Method MPVPE | MPJPE | FQ@5mm ] F@l5 mm |
Hasson et.al.[88] 13.2 - 0.436 0.908
Boukhayma et.al.[87] 13. - 0.435 0.898
MANO CNN [1] 10.8 0.529 0.935
MANO FIT [1] 13.7 ; 0.439 0.892
HTML [3] 11.1 11.0 0.508 0.930
S?Hand [129] 11.8 11.9 0.481 0.920
Ren et.al.[130] 8.1 8.0 0.649 0.966
Handy w/Obman 9.9 9.7 0.572 0.922
Handy++ w/Obman 8.5 8.6 0.624 0.946
Handy w/Synthetic 8.8 8.7 0.612 0.952
Handy++ w/Synthetic 7.8 7.7 0.662 0.964
Handy 7.8 7.8 0.654 0.971
Handy++ 6.9 7.1 0.701 0.987

Table 3.4: Quantitative comparison on the FreiHand dataset [1]. We evaluate the proposed
and the baseline methods in terms of mean per joint position error (MPJPE), mean per
vertex position error (MPVPE). Additionally, we report F-score at a given threshold d
(F@Qd) which is the harmonic mean of precision and recall.

FreiHand Dataset Synthetic Dataset
Original Image Ground Truth Predicted Original Image Ground Truth Predicted

Figure 3.17: Shape and pose reconstructions from the FreiHand [1] and the proposed
synthetic dataset.

3.4.4 Reconstruction from Point Clouds
Apart from the reconstruction from single images, the proposed method was also evalu-

ated on shape and pose reconstructions from point clouds. In particular, the proposed
Handy++ model was compared with the state-of-the-art implicit hand model LISA [85]
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on the registered MANO dataset [2]. Following [85], 100K points were sampled from the
surface of the MANO scans and a fitting optimization was performed using the Chamfer
distance between the sampled points and Handy template. To evaluate the fitting, the
vertex-to-point distances (in mm) from the reconstruction to the scan (R2S) point cloud
and the other way around (S2R) were measured. Table 3.5 shows that the proposed model
achieves a lower reconstruction error with only 8 latent codes, which translates to less than

10 shape components, outperforming LISA, MANO and Handy models.

Table 3.5: Reconstruction error on point clouds sampled from the MANO dataset [2].
R2S [mm] S2R [mm)]

MANO [2] 2.90 1.52
LISA-im [85] 1.96 1.13
LISA [85] 0.64 0.58
Handy w/MANO (n, = 10) 0.21 0.29
Handy w/MANO (n, = 30)  0.12 0.21
Handy (n. = 10) 0.16 0.25
Handy (n. = 30) 0.11 0.19
Handy++ (n, = 8) 0.08 0.12

3.5 Conclusion

In this chapter, the first large-scale shape and appearance hand model, named Handy++,
was introduced and presented. The proposed model was trained with over 1200 subjects
with large demographic diversity, overcoming the limitations of previous parametric mod-
els to reconstruct hands from diverse distributions, such as the shape of children’s hands.
The proposed model is structured with an encoder-decoder architecture that utilizes spiral
mesh convolutions. In contrast to traditional linear PCA models, the graph-based model
gains more expressive power and manages to outperform PCA models while having more
compact representations. Additionally, a style-based GAN was trained to generate UV tex-
tures with high frequency details that traditional PCA methods fail to model. Extending
comparison experiments showcase that Handy++ achieves remarkable results highlight-
ing and demonstrating its expressive power to reconstruct challenging hand shapes and

appearances.
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HE recent advances in deep learning have significantly pushed the state-of-the-

art in photorealistic video animation given a single image. In this chapter, those
advances are extrapolated to the 3D domain, by studying 3D image-to-video trans-

lation with a particular focus on dynamic 3D facial expressions. Although 3D facial
generative models have been widely explored during the past years, 3D animation re-
mains relatively unexplored. To this end, a deep mesh encoder-decoder like architecture
was employed to synthesize realistic high resolution facial expressions by using a single
neutral frame along with an expression identification. In addition, processing 3D meshes
remains a non-trivial task compared to data that live on grid-like structures, such as im-
ages. Given the recent progress in mesh processing with graph convolutions, a recently
introduced learnable operator was utilized, which acts directly on the mesh structure by
taking advantage of local vertex orderings. In order to generalize to 4D facial expressions
across subjects, the proposed